Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:40:44.411Z Has data issue: false hasContentIssue false

The climate in The Netherlands during the Younger Dryas and Preboreal: means and extremes obtained with an atmospheric general circulation model

Published online by Cambridge University Press:  01 April 2016

H. Renssen*
Affiliation:
Netherlands Centre for Geo-ecological Research (ICG), Faculty of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands, [email protected], phone +31 20 4447357, fax +31 20 6462457 Institut d’Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium, [email protected], phone +32 10 478501

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The shift from the coldYounger Dryas phase to the relatively warm Pre-boreal at~l 1.5 thousand years BP occurred within 50 calendar years and represents a clear example of rapid climate warming. Geologists and palaeo-ecologists have extensively studied the impact of this shift on the environment in The Netherlands. The global atmospheric general circulation model of the Max-Planck-Institute for Meteorology is applied to perform simulations of the Younger Dryas and Pre-boreal climates. Here detailed results are presented for the grid-cell representing The Netherlands, providing quantified estimates of climatic means and extremes for both periods. The results suggest that the Younger Dryas climate was characterised by cold winters (temperatures regularly below -20 °C) and cool summers (13-14 °C), with a high inter-annual variability, strong fluctuations in temperature, frequent storms and snowfall from September to May. The Pre-boreal climate was a ‘continental’ version of present-day climate, with cooler winters, warmer summers (~2 °C difference) and more snowfall, but lower wind speeds. Also, the Pre-boreal climate was wetter than the present and Younger Dryas climates. The main driving factors were the low temperatures of the partly sea-ice covered N Atlantic Ocean and the insolation that was very different from today, with more incoming solar radiation during summer (+30W/m2) and less during winter (-10W/m2).The presented detailed results could be valuable for interpreting palaeo-environmental records and for modelling studies on sedimentological processes during the Late Quaternary.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Adams, J., 1997. Europe during the last 150,000 years, Environmental Sciences Division, Oak Ridge National Laboratory, at www.ornl.gov Google Scholar
Barnola, J.M., Raynaud, D., Korotkevich, Y.S. & Lorius, C. 1987. Vostok ice core provides 160,000-year record of atmospheric CO2 . Nature: 329, 408414.CrossRefGoogle Scholar
Berger, A.L., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences: 35, 23632367.2.0.CO;2>CrossRefGoogle Scholar
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D., 1995. Variations in atmospheric methane concentration during the Holocene epoch. Nature: 374, 4649.CrossRefGoogle Scholar
Bohncke, S.J.R. 1993. Lateglacial environmental changes in The Netherlands: spatial and temporal patterns. Quaternary Science Reviews: 12, 707717.CrossRefGoogle Scholar
Bohncke, S.J.R. and Vandenberghe, J., 1991. Palaeohydrological development in the Southern Netherlands during die last 15 000 years. In: Starkel, L., Gregory, K.J., and Thornes, J.B. (eds.): Temperate palaeohydrology. John Wiley and Sons Ltd. (Wichester), pp. 253281.Google Scholar
Bohncke, S.J.R. & Wijmstra, L., 1988. Reconstruction of Late-Glacial lake-level fluctuations in The Netherlands based on palaeobotanical analyses, geochemical results and pollen density data. Boreas: 17, 403425.Google Scholar
Bohncke, S., Vandenberghe, J., Coope, R. & Reiling, R., 1987. Geomorphology and palaeoecology of the Mark valley (southern Netherlands): palaeoecology, palaeohydrology and climate during the Weichselian Late Glacial. Boreas: 16, 6985.CrossRefGoogle Scholar
Bohncke, S.J.R. Vandenberghe, J. & Huijzer, A.S., 1993. Periglacial environments during the Weichselian Late Glacial in the Maas Valley, The Netherlands. Geologie en Mijnbouw: 72, 193210.Google Scholar
Bogaart, P.W., and Van Balen, R.T., 2000. Numerical modeling of the response of alluvial rivers to Quaternary climate change. Global and Planetary Change: 27, 147163.CrossRefGoogle Scholar
Brauer, A., Endres, C., Günter, C., Litt, T., Stebich, M. & Negendank, J.F.W., 1999. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews: 18, 321329.CrossRefGoogle Scholar
Claussen, M., Lohmann, U., Roeckner, E. & Schulzweida, U., 1994. A global data set of land-surface parameters. Max-Planck-Institut für Meteorologie (Hamburg) Report 135, 30 pp.Google Scholar
Cleveringa, P., de Gans, W., Kolstrup, E. & Paris, F.P., 1977. Vegetational and climatic developments during the Late Glacial and the early Holocene and aeolian sedimentation as recorded in the Uteringsveen (Drente, The Netherlands). Geologie en Mijnbouw: 56, 234242.Google Scholar
De Groot, T., Cleveringa, P. & Klijnstra, B., 1987. Frost-mound scars and the evolution of a Late Dryas environment (Northern Netherlands). Geologie en Mijnbouw: 66, 239250.Google Scholar
DKRZ, 1994. The ECHAM 3 Atmospheric General Circulation Model. Deutsches Klimarechenzentrum (Hamburg), Technical report no. 6: 184 pp.Google Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature: 342, 637642.CrossRefGoogle Scholar
Flückiger, J., Dällenbach, A., Blunier, T., Stauffer, B., Stocker, T.F., Raynaud, D. & Barnola, J.-M., 1999. Variations in Atmospheric N2O concentration during abrupt climatic changes. Science: 285, 227230.CrossRefGoogle ScholarPubMed
Hoek, W.Z., 1997a. Late-glacial and early Holocene climatic events and chronology of vegetation development in The Netherlands. Vegetation History and Archaeobotany: 6, 197213.CrossRefGoogle Scholar
Hoek, W.Z., 1997b. Palaeogeography of Lateglacial vegetations. Netherlands Geographical Studies 230: 147 pp.Google Scholar
Huisink, M., 1997. Late-glacial sedimentological and morphological changes in a lowland river in response to climatic change: the Maas, southern Netherlands. Journal of Quaternary Science: 12, 209223.3.0.CO;2-P>CrossRefGoogle Scholar
Isarin, R.F.B., 1997. Permafrost distribution and temperatures in Europe during the Younger Dryas. Permafrost and Periglacial Processes: 8, 313333.3.0.CO;2-E>CrossRefGoogle Scholar
Isarin, R.F.B. & Bohncke, S.J.R. 1999. Mean July temperatures during the Younger Dryas in Northwestern and Central Europe as inferred from climate indicator plant species. Quaternary Research: 51, 158173.CrossRefGoogle Scholar
Isarin, R.F.B. & Renssen, H., 1999. Reconstructing and modelling Late Weichselian climates: the Younger Dryas in Europe as a case study. Earth-Science Reviews: 48, 138.CrossRefGoogle Scholar
Isarin, R.F.B., Renssen, H. & Koster, E.A., 1997. Surface wind climate during the Younger Dryas in Europe as inferred from aeolian records and model simulations. Palaeogeography, Palaeoclimatology, Palaeoecology: 134, 127148.CrossRefGoogle Scholar
Kallel, N., Labeyrie, L.D., Arnold, M., Okada, H., Dudleyn, W.C. & Duplessy, J.C., 1988. Evidence of cooling during the Younger Dryas in the western Norm Pacific. Oceanologica Acta: 11, 369375.Google Scholar
Kasse, C. 1995b. Younger Dryas cooling and fluvial response (Maas River, The Netherlands). Geologie en Mijnbouw: 74, 251256.Google Scholar
Kasse, C. 1995b. Younger Dryas climatic changes and aeolian depositional environments. In: Troelstra, S.R., Van Hinte, J.E., & Ganssen, G.M., (eds.): The Younger Dryas. KNAW Verhandelingen, Afd. Natuurkunde, Eerste Reeks, deel 44. North-Holland Publishers (Amsterdam): 2731.Google Scholar
Koc, N., Jansen, E. & Haflidason, H., 1993. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quaternary Science Reviews: 12, 115140.CrossRefGoogle Scholar
Krijnen, H.J. & Nellestijn, J.W. (eds.), 1992. Klimatologische gegevens van Nederlandse stations: normalen en extreme waarden van de 15 hoofdstations voor het tijdvak 1961–1990. KNMI publication 150–27 (De Bilt), 159 pp.Google Scholar
Leeder, M.R., Harris, T. & Kirkby, M.J., 1998. Sediment supply and climate change: implications for basin stratigraphy. Basin Research: 10, 718.CrossRefGoogle Scholar
Lydolph, P.E., 1977. Climates of the Soviet Union. Elsevier (Amsterdam), 443 pp.Google Scholar
Maarleveld, G.C. & van der Schans, R.P.H.P., 1961. De dekzand-morfologie van de Gelderse Vallei. Tijdschrift van het Koninklijk Nederlandsch Aardrijkskundig Genootschap: 78, 2234.Google Scholar
Mikolajewicz, U. Crowley, T.J., Schiller, A. & Voss, R., 1997. Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature: 387, 384387.CrossRefGoogle Scholar
Peltier, W.R., 1994. Ice age paleotopography. Science: 265, 195201.CrossRefGoogle ScholarPubMed
Raynaud, D., Jouzel, J., Barnola, J.M., Chappellaz, J., Delmas, R.J. & Lorius, C. 1993. The ice record of greenhouse gases. Science: 259, 926933.CrossRefGoogle Scholar
Renssen, H., 1997. The global response to Younger Dryas boundary conditions in an AGCM simulation. Climate Dynamics: 13, 587599.CrossRefGoogle Scholar
Renssen, H. & Isarin, R.F.B., 1998. Surface temperature in NW Europe during the Younger Dryas: AGCM simulation compared with temperature reconstructions. Climate Dynamics: 14, 3344.CrossRefGoogle Scholar
Renssen, H. & Isarin, R.F.B., 2001. The two major warming phases of the last deglaciation at ~14.7 and ~11.5 kyr cal BP in Europe: climate reconstructions and AGCM experiments. Global and Planetary Change, in press.Google Scholar
Renssen, H. & Lautenschlager, M., 2000. The effect of vegetation in a climate model simulation on the Younger Dryas. Global and Planetary Change: 26, 423443.CrossRefGoogle Scholar
Renssen, H., Isarin, R.F.B., Vandenberghe, J., Lautenschlager, M. & Schiese, U., 2000a. Permafrost as a critical factor in palaeocli-mate modelling: the Younger Dryas case in Europe. Earth and Planetary Science Letters: 176, 15.CrossRefGoogle Scholar
Renssen, H., Lautenschlager, M. & Schuurmans, C.J.E., 1996. The atmospheric winter circulation during the Younger Dryas stadial in the Atlantic/European sector. Climate Dynamics: 12, 813824.CrossRefGoogle Scholar
Renssen, H., Van Geel, B., van der Plicht, J. & Magny, M., 2000b. Reduced solar activity as a trigger for the start of the Younger Dryas? Quaternary International: 68-71, 373383.CrossRefGoogle Scholar
Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U. & Schulzweida, U., 1996. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie (Hamburg), Report no. 218:90 pp.Google Scholar
Sarnthein, M., Jansen, E., Weinelt, M., Arnold, M., Duplessy, J.C., Erlenkeuser, H., Flatøy, A., Johannessen, G., Johannessen, T., Jung, S., Koc, N., Labeyrie, L., Maslin, M., Pflaumann, U. & Schulz, H., 1995. Variations in Atlantic surface ocean paleoceanography, 50°-80°N: A time-slice record of the last 30,000 years. Paleoceanography: 10, 10631094.CrossRefGoogle Scholar
Schiller, A., Mikolajewicz, U. & Voss, R., 1997. The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Climate Dynamics: 13, 325347.CrossRefGoogle Scholar
Schulz, H., 1995. Meeresoberflächentemperaturen vor 10.000 Jahren - Auswirkungen des frühholozänen Insolationsmaximum. Geologisches-Paläontologische Institut Universität Kiel Report 73, 156 pp.Google Scholar
Taylor, K.C., Lamorey, G.W. Doyle, G.A., Alley, R.B., Grootes, P.M., Mayewski, P.A., White, J.W.C. & Barlow, L.K., 1993. The “flickering switch” of late Pleistocene climate change. Nature: 361, 432436.CrossRefGoogle Scholar
Texier, D., de Noblet, N., Harrison, S.P., Haxeltine, A., Jolly, D., Joussaume, S., Laarif, F., Prentice, I.C., and Tarasov, P., 1997. Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Climate Dynamics: 13, 865882.CrossRefGoogle Scholar
Thunell, R.C. & Miao, Q.M., 1996. Sea surface temperatures of the Western Equatorial Pacific Ocean during the Younger Dryas. Quaternary Research: 46, 7277.CrossRefGoogle Scholar
Vandenberghe, J., Bohncke, S., Lammers, W. & Zilverberg, L., 1987. Geomorphology and palaeoecology of the Mark valley (southern Netherlands): geomorphological valley development during the Weichselian and Holocene. Boreas: 16, 5567.CrossRefGoogle Scholar
Vandenberghe, J., 1991. Changing conditions of aeolian sand deposition during the last déglaciation period. Zeitschrift für Geomorphologie: Supplement Band 90, 193207.Google Scholar
Vandenberghe, J., 1995. The climate of the Younger Dryas in The Netherlands. Geologie en Mijnbouw: 74, 245249.Google Scholar
van der Hammen, T., 1952. Late-Glacial flora and periglacial phenomena in The Netherlands. Leidse Geologische Mededelingen: 17, 71184.Google Scholar
Van Geel, B., Bohncke, S.J.P. & Dee, H., 1980/1981. A palaeoecological study of an upper Late ‘Glacial and Holocene sequence from “de Borchert”, The Netherlands. Review of Palaeobotany and Palynology: 31, 367448.CrossRefGoogle Scholar
Weerts, H.J.T. & Berendsen, H.T.A., 1995. Late Weichselian and Holocene fluvial palaeogeography of the southern Rhine-Meuse delta (The Netherlands). Geologie en Mijnbouw 74: 199212.Google Scholar
Wijmstra, T.A. & de Vin, E., 1971. The new Dinkel canal section. Mededelingen Rijks Geologische Dienst Nieuwe Serie: 22, 101129.Google Scholar