Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T12:19:14.288Z Has data issue: false hasContentIssue false

Boron metasomatism in the Brabant Massif (Belgium): Geochemical and petrographical evidence of Devonian tourmalinite pebbles

Published online by Cambridge University Press:  01 April 2016

C. Corteel*
Affiliation:
Universiteit Gent, Laboratorium voor Mineralogie & Petrologie, Krijgslaan 281 – S8, B-9000 Gent, Belgium; e-mail:[email protected]
P. De Paepe
Affiliation:
Universiteit Gent, Laboratorium voor Mineralogie & Petrologie, Krijgslaan 281 – S8, B-9000 Gent, Belgium; e-mail:[email protected]
*
*Corresponding author
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New petrographical and geochemical evidence of tourmalinite pebbles from two Lower and three Middle Devonian formations from Belgium is presented. Petrography, REE, transition metal and microprobe data of the studied rocks suggest it are (meta)sediment-derived tourmalinites formed by boron metasomatism (and hydrothermal brecciation) in an intrusive setting. Tourmaline mineralizations within eastern Avalonia are known in south-east Ireland, the English Lake District and East Anglia. Based on previously suggested relations between Early Palaeozoic igneous activity in last two mentioned regions and the Brabant Massif, it is presumed that the Brabant Massif also underwent granite-related tourmalinization and that this was the source of the studied pebbles. Petrologie differences between pebbles found in Middle Devonian formations and pebbles from Lower Devonian formations, suggest that fluid circulation occurred on a regional scale, possibly extending into the Stavelot massif.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2003

References

Andre, L. & Deutsch, S., 1986. Magmatic 87Sr/86Sr relicts in hydrothermally altered quartz diorites (Brabant Massif, Belgium) and the role of epidote as a Sr filter. Contributions to Mineralogy and Petrology 92: 104–112.CrossRefGoogle Scholar
Anten, J., 1921. Sur l’origine des roches tourmalinifères du poudingue d’Ombret. Annales de la Société géologique de Belgique 45: B 92–93.Google Scholar
Bach, W. & Irber, W. 1998. Rare earth element mobility in the oceanic lower sheeted dyke complex: evidence from geochemical data and leaching experiments. Chemical Geology 151: 309–326.CrossRefGoogle Scholar
Bajwah, Z.U., White, A.J.R., Kwak, T.A.P. & Price, R.C., 1995. The Renison Granite, Northwestern Tasmania: A petrological, geochemical and fluid inclusion study of hydrothermal alteration. Economic Geology 90: 1663–1675.CrossRefGoogle Scholar
Benvenuti, M., Lattanza, P. & Tanelli, G., 1989. Tourmalinite-associated Pb-Zn-Ag mineralization at Bottino, Apuane Alps, Italy: Geologic setting, mineral textures, and sulfide chemistry. Economic Geology 84: 1277–1292.CrossRefGoogle Scholar
Bultynck, P., Coen-aubert, M., Dejonghe, L., Godefroid, J., Hance, L., Lacroix, D., Preat, A., Stainier, P., Steemans, P., Streel, M. & Tourneur, F., 1991. Les formations du Dévonien Moyen de la Belgique. Toelichtende verhandelingen voor de geologische en mijnkaarten van België, 30. Ministerie van Economische Zaken (Brussel).Google Scholar
Cavarretta, G. & Puxeddu, M., 1990. Schorl-dravite-ferridravite tourmalines deposited by hydrothermal magmatic fluids during early evolution of the Larderello geothermal field, Italy. Economic Geology 85: 1236–1251.CrossRefGoogle Scholar
Chacksfield, B.C., Devos, W., Dhooge, L., Dusar, M., Lee, M.K., Poitevin, C. Royles, C.P. & Verniers, J., 1993. A new look at Belgian aeromagnetic and gravity-data through image-based display and integrated modeling techniques. Geological Magazine 130: 583–591.CrossRefGoogle Scholar
Cooper, D.C., Lee, M.K., Fortey, A.H., Cooper, A.H., Rundle, C.C., Webb, B.C. & Allen, P.M., 1988. The Crummock Water aureole: a zone of metasomatism and source of ore metals in the English Lake District. Journal of the Geological Society, London 145: 523–540.CrossRefGoogle Scholar
Corteel, C. 2000a. Petrology of tourmalinite pebbles in Devonian conglomerates from Belgium: a preliminary study towards characterisation of eroded Caledonides. In: Abstracts volume of the GEOSCIENCE 2000, 17–20 April 2000, Manchester, U.K. Google Scholar
Corteel, C. 2000b. Boron-metasomatism in the Brabant Massif (Belgium)? Evidence from the Lower/Middle Devonian Burnot Formation. In: Abstracts volume of the joint meeting of the EUROPROBE (TESZ) and PACE projects, 16–23 September 2000, Zakopane, Poland.Google Scholar
De La Vallee Poussin, C. & Renard, A.F., 1877. Note sur un fragment de roche tourmalinifère du poudingue de Bousalle. Bulletin de l’Académie royale de Belgique 43, sér. 2: 359–372.Google Scholar
De Vos, W., 1997. Influence of the granitic batholith of Flanders on Acadian and later deformation (Brabant Massif, Belgium). Aardkundige Mededelingen 8: 49–52.Google Scholar
Dietz, F., 1975. Die Borkonzentration in Wässern als ein Indikator der Gewässerbelastung. GWF Wasser Abwasser 116: 301–308.Google Scholar
Fieremans, M. & De Paepe, P., 1982. Genesis of tourmalinites from Belgium: petrographical and chemical evidence. Mineralogical Magazine 46: 95–102.CrossRefGoogle Scholar
Fortey, N.J. & Cooper, D.C., 1986. Tourmalinization in the Skiddaw Group around Crummock Water, English Lake District. Mineralogical Magazine 50: 17–26.CrossRefGoogle Scholar
Gallup, D.L., 1998. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery. Ore geology reviews 12: 225–236.CrossRefGoogle Scholar
Godefroid, J., Blieck, A., Bultynck, P., Dejonghe, L., Gerrienne, P., Hance, L., Meilliez, F., Stainier, P. & Steemans, P., 1994. Les formations du Dévonien Inférieur du Massif de la Vesdre, de la Fenêtre de Theux et du Synclinorium de Dinant (Belgique, France). Toelichtende verhandelingen voor de geologische en mijnkaarten van België, 38. Ministerie van Economische Zaken (Brussel).Google Scholar
Gromet, L.P., Dymek, R.F., Haskin, L.A. & Korotev, R.L., 1984. The ‘North American shale composite’: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta 48: 2469–2482.CrossRefGoogle Scholar
Haas, J.R., Shock, E.L. & Sassani, D.C., 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta 59: 4329–4350.CrossRefGoogle Scholar
Hance, L., Dejonghe, L., Fairon-Demaret, M. & Steemans, P., 1996. La Formation de Pépinster dans le Synclinorium de Verviers, entre Pépinster et Eupen (Belgique) - contexte structural et stratigraphique Annales de la Société géologique de Belgique 117: 75–93.Google Scholar
Hawthorne, F.C. & Henry, D.C. 1999. Classification of the minerals of the tourmaline group. European Journal of Mineralogy 11:201–215.CrossRefGoogle Scholar
Hennebert, M., 1994 Rôle possible des structures profondes du Massif Cambro-Silurien du Brabant dans l’évolution des bassins sédimentaires Post-Calédoniens (Belgique et Nord de la France). Annales de la Société géologique de Belgique 116: 147–162.Google Scholar
Henry, D.J. & Guidotti, C.V., 1985. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist 70: 1–15 Google Scholar
Jiang, S., Palmer, M.R., Slack, J.F. & Shaw, D.R., 1998. Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia. Economic Geology 93: 47–67.CrossRefGoogle Scholar
Kasig, W. & Neumann-Mahlkau, P., 1969. Die Entwicklung des Eifeliums in Old-Red-Fazies zur Riff-Fazies im Givetium und Unteren Frasnium am Nordrand des Hohen Venns (Belgien-Deutschland). Geologische Mitteilungen 8: 327–388.Google Scholar
Kennan, P.S., 1983. Tourmalinites from Belgium and from SE Ireland - a discussion (short communication). Mineralogical Magazine 47: 236–238.CrossRefGoogle Scholar
Lewis, A.J., Komninou, A., Yardley, B.W.D. & Palmer, M.R., 1998. Rare earth element speciation in geothermal fluids from Yellowstone National Park, Wyoming, USA. Geochimica et Cosmochimica Acta 62: 657–663.CrossRefGoogle Scholar
London, D. & Manning, D.A.C., 1995. Chemical variation and significance of tourmaline from Southwest England. Economic Geology 90: 495–519.CrossRefGoogle Scholar
Macar, P., 1948. Nombreux cailloux de tourmalinite dans un banc d’arkose du Gedinnien, à Ovifat (Sourbrodt). Annales de la Société géologique de Belgique 71: 247–257.Google Scholar
McArdle, P., Fitzell, M., Oosterom, M.G., O’Connor, P.J. & Kennan, P.S., 1989. Tourmalinite as a potential host rock for gold in the Caledonides of southeast Ireland. Mineralium Deposita 24: 154–159.CrossRefGoogle Scholar
McConnell, B. & Morris, J. 1997. Initiation of Iapetus subduction under Irish Avalonia. Geological Magazine 134: 213–218.CrossRefGoogle Scholar
McKerrow, W.S. & Cocks, L.R.M. 1995. The use of biogeography in the terrane assembly of the Variscan belt of Europe. Studia geophysica et geodaetica 39: 269–275.CrossRefGoogle Scholar
Medlin, J.H. & Bodkin, J.B., 1969. Atomic absorption analysis of silicates employing LiBO2 fusion. Atomic Absorption Newsletter 8: 25–29.Google Scholar
Michailidis, K.M., 1998. Tourmaline concentrations in metasedimentary rocks of the Efkarpia-Gerakario area in Macedonia, northern Greece. Chemie der Erde 58: 80–97.Google Scholar
O’Connor, P.J., Aftalion, M. & Kennan, P.S., 1989. Isotopic U-Pb ages of zircon and monazite from the Leinster Granite, Southeast Ireland. Geological Magazine 126: 725–728.Google Scholar
Pesquera, A. & Velasco, F., 1997. Mineralogy, geochemistry and geological significance of tourmaline-rich rocks from the Paleozoic Cinco Villas Massif (western Pyrenees, Spain). Contributions to Mineralogy and Petrology 129: 53–74.CrossRefGoogle Scholar
Pharaoh, T.C., Merriman, R.J., Evans, J.A., Brewer, T.S., Webb, P.C. & Smith, N.J.P., 1991. Early Palaeozoic arc-related volcanism in the Concealed Caledonides of Southern Britain. Annales de la Société géologique de Belgique 114: 63–91.Google Scholar
Slack, J.F., Palmer, M.R., Stevens, B.P. & Barnes, R.G., 1993. Origin and significance of tourmaline-rich rocks in the Broken Hill District, Australia. Economic Geology 88: 505–541.CrossRefGoogle Scholar
Slack, J.F., Passchier, C.W. & Zhang, J.S., 1996. Metasomatic tourmalinite formation along basement-cover decollements, Orobic Alps, Italy. Schweizerische Mineralogische und Petrographische Mitteilungen 76: 193–207.Google Scholar
Stainier, X., 1889. Caillou tourmalinifère dans le poudingue de Burnot. Annales de la Société géologique de Belgique 17: 45–48.Google Scholar
Steemans, P., 1989. Paléogéographie de 1’ Eodévonien Ardennais et des régions limitrophes. Annales de la Société géologique de Belgique 112(1): 103–119.Google Scholar
Steven, N.M. & Moore, J.M., 1995. Tourmalinite mineralization in the Late Proterozoic Kuiseb Formation of the Damara Orogen, Central Namibia: Evidence for a replacement origin. Economic Geology 90: 1098–1117.CrossRefGoogle Scholar
Sun, S.S. & McDonough, W.F., 1989. Chemical And Isotopic Systematics Of Oceanic Basalts: Implications For Mantle Compositions And Processes. In: Saunders, A.D. & Norry, M.J. (eds.): Magmatism In The Ocean Basins. Geological Society Special Publication (London) 42: 313–345.Google Scholar
Ziegler, P., 1982. Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.V., Elsevier (Amsterdam): 130 pp & enclosures.Google Scholar