Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T17:23:33.576Z Has data issue: false hasContentIssue false

An investigation into the genesis of an erratic (retro) eclogite block from Haren, Groningen, the Netherlands

Published online by Cambridge University Press:  01 April 2016

J. Langendoen*
Affiliation:
Bereklauw 1, 2761 WZ Naaldwijk, the Netherlands Structural Geology Group, Institute of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, the Netherlands
H.L.M. van Roermund
Affiliation:
Structural Geology Group, Institute of Earth Sciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, the Netherlands
*
*Corresponding author. Email:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In boulder clays and glacial deposit sands, exposed in the northern part of the Netherlands, erratic blocks of (ultra)high pressure (UHP) metamorphic rocks may be found that originate from the Baltic Shield (Scandinavia). The occurrence of (U)HP metamorphic rocks in Scandinavia is limited to: (1) isolated occurrences within the Scandinavian Caledonides (Western part of Scandinavia); (2) Sveconorvegian rocks from the Halland area, Southwest Sweden; and (3) Kola Peninsula (Northern Scandinavia). For this reason (U)HP rocks form excellent indicator pebbles/rocks that may be used to trace back the source area from where the erratic blocks, found in the Netherlands, were derived. An example of this, an erratic (retro) eclogite block found in Haren, is investigated in the present study using naked eye, light-optical and electron microprobe (EMP) techniques. EMP mineral analyses were used to reconstruct the PT conditions under which the (retro) eclogite was formed (T = 756 °C/min. P = 16,2 kb). This result, in combination with the mineral chemistry of the major rock forming minerals, provides evidence that this erratic block originates from the upper HP tectonic lens exposed in the Caledonian Seve Nappe Complex of Northern Jämtland, Sweden.

Type
Geo(Im)pulse
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Albrecht, L.G., 2000. Structural evolution of eclogite-bearing nappes. Evidence from the Seve Nappe Complex, Swedish Caledonides. In: Early structural and metamorphic evolution of the Scandinavian Caledonides: a study of the eclogite bearing Seve Nappe Complex at the Arctic Circle, Sweden. PhD Thesis, Lund University, Ch. 6: 115.Google Scholar
Andreasson, P.G., Gee, D.G. & Sukotji, S., 1985. Seve eclogites in the Nonbotten Caledonides, Sweden. In: Gee, D.G. & Sturt, B.A. (eds): The Caledonide Orogen - Scandinavia and Related Areas. John Wiley and Sons Ltd, Chichester: 887901.Google Scholar
Berglund, J. & Connelly, J.N., 1994. Sveconorwegian structural evolution in the eastern segment of the southwest Swedish Gneiss Region. Abstract. Precambrium Crustal Evolution in the North Atlantic Regions, Nottingham, UK. Terra Abstracts, 2 (6): 2.Google Scholar
Bingen, B., Skår, ø., Marker, M., Sigmond, E.M.O., Nordgulen, ø., Ragnhildstveit, J., Mansveld, J., Tucker, R.D. & Liégeois, J.-P., 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology, Vol. 85: 87116.Google Scholar
Brey, G.P. & Köhler, T., 1990. Geothermobarometry in four phase Iherzolites. Part II: New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology 31: 13531378.CrossRefGoogle Scholar
Brueckner, H.K. & Van Roermund, H.L.M., 2004. Dunk tectonics: A multiple subduction/eduction model for the evolution of the Scandinavian Caledonides. Tectonics, 23–1, TC 2004: 120.CrossRefGoogle Scholar
Brueckner, H.K. & Van Roermund, H.L.M., 2007. Concurrent HP Metamorphism on both Margins of Iapetus: Ordovician ages for Eclogites and Garnet Pyroxenites from the Seve Nappe Complex, Swedish Caledonides. Journal of the Geological Society (London) 2007, 117128.Google Scholar
Carswell, D.A. (ed.), 1990. Eclogite Facies Rocks, Blackie and Son Ltd. (Glasgow): 1396.CrossRefGoogle Scholar
Coleman, R.G., Lee, D.E., Beatty, L.B. & Brannock, W.W., 1965. Eclogites and eclogites: Their differences and similarities. Geological Society of America Bulletin, 76: 483504.CrossRefGoogle Scholar
Ellis, D.J. & Green, D.H., 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71, 1322.Google Scholar
Essex, R.M., Gromet, L.P., Andreasson, P.G. & Albrecht, L., 1997. Early Ordovician U-Pb metamorphic ages of the eclogite-bearing Seve Nappes, Northern Scandinavian Caledonides. Journal of Metamorphic Geology, 15: 665676.CrossRefGoogle Scholar
Gasparik, T. & Lindsley, D.H., 1980. Phase equilibria at high pressure of pyroxenes containing monovalent and trivalent ions. Reviews in Mineralogy, Mineralogical Society of America, 7: 309339.Google Scholar
Huisman, H., 1982. Een zwerfsteen van kelyphietische hoomblende-eklogiet. Grondboor en Hamer, 5: 130132.Google Scholar
Kaulina, T. & Apanasevich, E., 2005. Late Archean Eclogites of the Kola Peninsula (NE Baltic Shield): U-Pb and Sm-Nd Data. Mitteilungen der Österreichischen Mineralogischen Gesellschaft. Band 150: p 64.Google Scholar
Krogh, E.J., 1988. The garnet-clinopyroxene Fe-Mg geothermometer - A reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 99: 4448.Google Scholar
Kullerud, K., Stephens, M.B. & Zachrisson, E., 1990. Pillow lavas as protoliths for eclogites: evidence from a late Precambrian-Cambrian continental margin, Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, 105: 110.CrossRefGoogle Scholar
Leake, B.E. & Woolley, A.R., 1997. Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9: 623651.CrossRefGoogle Scholar
Litjens, A., 2002. PT estimates of high-pressure metamorphic rocks from the Seve Nappe Complex, Jämtland, Central Scandinavian Caledonides. MSc Thesis, University of Utrecht, the Netherlands: 194.Google Scholar
Möller, C. & Söderlund, U., 1997. Age constraints on the regional deformation within the Eastern Segment, S. Sweden: Late Sveconorwegian granite dyke intrusion and metamorphic-deformational relations. Geologiska Föreningens i Stockholm Förhandlingar, 119: 112.Google Scholar
Möller, C., 1998. Decompressed eclogites in the Sveconorwegian (Grenvillian) orogen of SW Sweden: petrology and tectonic implications. Journal of metamorphic Geology, 16: 641656.Google Scholar
Möller, C., 1999. Sapphirine in SW Sweden: a record of Sveconorwegian (Grenvillian) late-orogenic tectonic exhumation. Journal of metamorphic Geology, 17, 127141.CrossRefGoogle Scholar
Mark, M.B.E., Kullerud, K. & Stabel, A., 1988. Sm-Nd dating of Seve eclogites, Norrbotten, Sweden - Evidence for early Caledonian (505 Ma) subduction. Contributions to Mineralogy and Petrology, 99: 344351.Google Scholar
Råheim, A. & Green, D.H., 1975. P, T paths of natural eclogites during metamorphism - A record of subduction. Lithos, 8: 317328.Google Scholar
Santallier, D., 1988. Mineralogy and crystallization of the Seve eclogites in the Vuoggatjålme Area, Swedish Caledonides of Norrbotten. Geologiska Föreningens i Stockholm Förhandlingar, 110: 8998.CrossRefGoogle Scholar
Schumacher, J.C., 1997. Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names, Appendix 2. European Journal of Mineralogy, 9: 623651.Google Scholar
Smed, P., 1994. Steine aus dem Norden. Gebrüder Borntraeger, Berlin-Stuttgart: 194 pp.Google Scholar
Stephens, M.B. & Van Roermund, H.L.M., 1984. Occurrence of glaucophane and crossite in eclogites of the Seve Nappes, southern Norrbotten Caledonides, Sweden. Norsk Geologisk Tidsskrift, 64: 155163.Google Scholar
Stichting Wetenschappelijke Atlas van Nederland, 1985. Atlas van Nederland, deel 13, Geologie. Staatsuitgeverij, ‘s-Gravenhage.Google Scholar
Van Roermund, H.L.M., 1985. Eclogites of the Seve Nappe, central Scandinavian Caledonides. In: Gee, D.G. & Sturt, B.A. (eds): The Caledonide Orogen-Scandinavia and Related Areas, John Wiley and Sons Ltd (Chichester): 873886.Google Scholar
Van Roermund, H.L.M., 1989. High-pressure ultramafic rocks from the Allochthonous Nappes of the Swedish Caledonides. In: Gayer, R.A. (ed.): The Caledonide Geology of Scandinavia, Graham and Trotman (London): 205219.Google Scholar
Van Roermund, H.L.M. & Bakker, E., 1984. Structure and metamorphism of the Tången-Inviken area, Seve Nappes, Central Scandinavian Caledonides. Geologiska Föreningens i Stockholm Förhandlingar, 105: 301319.Google Scholar
Williams, P.F. & Zwart, H.J., 1977. A model for the development of the Seve-Köli Caledonian Nappe Complex. In: Saxena, S.K. & Bhattacharji, S. (eds): Energetics of Geological Processes, Springer Verlag, New York: 170187.Google Scholar
Zandstra, J.G., 1988. Noordelijke Kristallijne Gidsgesteenten. Brill, E.J., Leiden - New York - København - Köln: 469 pp.Google Scholar
Zandstra, J.G., 1999. Platenatlas van noordelijke kristallijne gidsgesteenten. Backhuys Publishers (Leiden): 412 pp.Google Scholar
Zwart, H.J., 1974. Structure and metamorphism in the Seve-Köli Nappe Complex and its implications concerning the formation of metamorphic nappes. Centre du Societé Geologique de Belgique: 129144.Google Scholar