Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T17:36:29.623Z Has data issue: false hasContentIssue false

3D modelling of the shallow subsurface of Zeeland, the Netherlands

Published online by Cambridge University Press:  24 March 2014

J. Stafleu*
Affiliation:
TNO – Geological Survey of the Netherlands. Princetonlaan 6, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands
D. Maljers
Affiliation:
TNO – Geological Survey of the Netherlands. Princetonlaan 6, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands
J.L. Gunnink
Affiliation:
TNO – Geological Survey of the Netherlands. Princetonlaan 6, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands
A. Menkovic
Affiliation:
TNO – Geological Survey of the Netherlands. Princetonlaan 6, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands
F.S. Busschers
Affiliation:
TNO – Geological Survey of the Netherlands. Princetonlaan 6, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Geological Survey of the Netherlands aims at building a 3D geological voxel model of the upper 30 m of the subsurface of the Netherlands in order to provide a sound basis for subsurface related questions on, amongst others, groundwater extraction and management, land subsidence studies, aggregate resources and infrastructural issues. The Province of Zeeland (SW Netherlands, covering an area of approximately 70 by 75 km) was chosen as the starting point for this model due to an excellent dataset of 23,000 stratigraphically interpreted borehole descriptions.

The modelling procedure involved a number of steps. The first step is a geological schematisation of the borehole descriptions into units that have uniform sediment characteristics, using lithostratigraphical, lithofacies and lithological criteria. During the second modelling step, 2D bounding surfaces are constructed. These surfaces represent the top and base of the lithostratigraphical units and are used to place each voxel (100 by 100 by 0.5 metres) in the model within the correct lithostratigraphical unit. The lithological units in the borehole descriptions are used to perform a final 3D stochastic interpolation of lithofacies, lithology (clay, sand, peat) and if applicable, sand grain-size class within each lithostratigraphical unit. After this step, a three-dimensional geological model is obtained. The use of stochastic techniques such as Sequential Gaussian Simulation and Sequential Indicator Simulation, allowed us to compute probabilities for lithostratigraphy, lithofacies and lithology for each voxel, providing a measure of model uncertainty.

The procedures described above resulted in the first fully 3D regional-scale lithofacies model of the shallow subsurface in the Netherlands. The model provides important new insights on spatial connectivity of sediment units of, for example, sandy Holocene tidal channel systems. Our results represent a major step forward towards a fully 3D voxel model of the Netherlands.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2011

References

Beets, D.J. & Van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and the back-barrier basins of Belgium and The Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 316.CrossRefGoogle Scholar
Bosch, J.H.A., 2000. Standaard Boor Beschrijvingsmethode. Netherlands Institute of Applied Geosciences TNO, Report NITG 00-141-A.Google Scholar
Bogaert, P., 2002. Spatial prediction of categorical variables: the Bayesian maximum entropy approach. Stochastic Environmental Research and Risk Assessment SERRA, 6, 6: 425448.CrossRefGoogle Scholar
Doppert, J.W.Chr, Ruegg, G.H.J., Van Staalduinen, C.J., Zagwijn, W.H. & Zandstra, J.G., 1975. Formaties van het Kwartair en Boven-Tertiair in Nederland. In: Zagwijn, W.H. & Van Staalduinen, C.J. (eds): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst, Haarlem: 1156.Google Scholar
Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, 483 pp.CrossRefGoogle Scholar
Hageman, B.P., 1963. De profieltype-legenda van de nieuwe geologische kaart voor het zeeklei- en rivierkleigebied. Tijdschrift voor het Koninklijk Nederlands Aardrijkskundig Genootschap, Tweede Reeks 80: 217229.Google Scholar
Hageman, B.P., 1964. Blad Goeree en Overflakkee, Toelichting bij de Geologische Kaart van Nederland, 1: 50.000. Rijks Geologische Dienst Haarlem, 89 pp.Google Scholar
Hageman, B.P., 1969. Development of the western part of the Netherlands during the Holocene. Geologie en Mijnbouw 48, 373388.Google Scholar
Kasse, C., 1988. Early Pleistocene tidal and fluvial environments in the southern Netherlands and northern Belgium. Ph.D. dissertation, Vrije Universiteit Amsterdam, 190 pp.Google Scholar
Kiden, P., 1995. Holocene relative sea-level change and crustal movement in the southwestern Netherlands. Marine Geology, 124: 2141.CrossRefGoogle Scholar
Kooi, H., Johnston, P., Lambeck, K., Smither, C. & Molendijk, R., 1998. Geological causes of recent (~100 yr) vertical land movement in the Netherlands. Tectonophysics, 299, 297316.CrossRefGoogle Scholar
Miall, A.D., 1999. Principles of sedimentary basin analysis (3rd ed.). Springer, Berlin, 616 pp.Google Scholar
Soares, A., 1992. Geostatistical estimation of multi-phase structure. Mathematical Geology 24: 149160.CrossRefGoogle Scholar
Schokker, J. & Weerts, H.J.T., 2004. Afzettingsmilieus en faciëseenheden van de Tertiaire en Kwartaire lithostratigrafische eenheden in de ondergrond van Nederland. Netherlands Institute of Applied Geosciences TNO, Report 03-194-A, 31 pp.Google Scholar
Schokker, J., Weerts, H.J.T., Westerhoff, W.E., Berendsen, H.J.A. & Den Otter, C., 2007. Introduction of the Boxtel Formation and implications for the Quaternary lithostratigraphy of the Netherlands. Netherlands Journal of Geosciences / Geologie en Mijnbouw 86: 197210.CrossRefGoogle Scholar
Strebelle, S., 2002. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology, 34: 121.CrossRefGoogle Scholar
Van der Meulen, M.J., Van Gessel, S.F. and Veldkamp, J.G., 2005. Aggregate resources in the Netherlands. Netherlands Journal of Geosciences, 84: 379387.CrossRefGoogle Scholar
Van der Meulen, M.J., Maljers, D., Van Gessel, S.F. & Gruijters, S.H.L.L., 2007. Clay resources in the Netherlands. Netherlands Journal of Geosciences, 86: 117130.CrossRefGoogle Scholar
Van Rummelen, F.F.F.E., 1965. Zeeuwsch Vlaanderen, Bladen Zeeuwsch Vlaanderen, West en Oost, Toelichting bij de Geologische Kaart van Nederland, 1: 50.000. Rijks Geologische Dienst Haarlem, 79 pp.Google Scholar
Van Rummelen, F.F.F.E., 1972. Blad Walcheren, Toelichting bij de Geologische kaart van Nederland 1:50.000. Rijks Geologische Dienst, Haarlem, 120 pp.Google Scholar
Vernes, R.W., Hummelman, H.J. & Menkovic, A., 2010. REGIS Zeeland, Deelrapport B: Hydrogeologische opbouw en hydraulische eigenschappen van Holocene afzettingen. TNO, Report 034-UT-2010-01647/A, 74 pp.Google Scholar
Vernes, R.W. & Van Doorn, Th.H.M., 2005. Van Gidslaag naar Hydrogeologische Eenheid – Toelichting op de totstandkoming van de dataset REGIS II. Netherlands Institute of Applied Geosciences TNO, Report 05-038-B, 105 pp.Google Scholar
Vos, P.C., 1992. Toelichting kaartblad 43/49 West en 49 Oost – Concept toelichting 43/49 West: Holocene deel. Dienstrapport 1454, Rijks Geologische Dienst, Haarlem, 41 pp.Google Scholar
Vos, P.C. & Van Heeringen, R.M., 1997. Holocene geology and occupation history of the Province of Zeeland. In: Fischer, M.M. (ed.): Holocene evolution of Zeeland (SW Netherlands), 5110.Google Scholar
Weerts, H.J.T., Westerhoff, W.E., Cleveringa, P., Bierkens, M.F.P., Veldkamp, J.G. and Rijsdijk, K.F., 2005. Quaternary geological mapping of the lowlands of the Netherlands, a 21st century perspective. Quaternary International, 133–134: 159178.CrossRefGoogle Scholar
Westerhoff, W.E., 2009. Stratigraphy and sedimentary evolution. The lower Rhine-Meuse system during the Late Pliocene and Early Pleistocene (southern North Sea Basin). Ph.D. dissertation, Vrije Universiteit Amsterdam, 168 pp.Google Scholar
Westerhoff, W.E., Wong, Th.E. & Geluk, M.C., 2003. De opbouw van de ondergrond. In: De Mulder, E.F.J., Geluk, M.C., Ritsema, I., Westerhoff, W.E. & Wong, Th.E. (eds): De ondergrond van Nederland. Nederlands Instituut voor Toegepaste Geowetenschappen TNO, Geologie van Nederland 7: 247352.Google Scholar
Ziegler, P.A., 1990. Geological atlas of Western and Central Europe. 3rd edition, Shell International Petroleum Maatschappij B.V., Geological Society, Bath, 239 pp.Google Scholar
Ziegler, P.A., 1994. Cenozoic rift system of western and central Europe: an overview, Geologie en Mijnbouw 73: 99127.Google Scholar