For a given training corpus of parallel sentences, the quality of the output produced by a translation system relies heavily on the underlying similarity measurement criteria. A phrase-based machine translation system derives its output through a generative process using a Phrase Table comprising source and target language phrases. As a consequence, the more effective the Phrase Table is, in terms of its size and the output that may be derived out of it, the better is the expected outcome of the underlying translation system. However, finding the most similar phrase(s) from a given training corpus that can help generate a good quality translation poses a serious challenge. In practice, often there are many parallel phrase entries in a Phrase Table that are either redundant, or do not contribute to the translation results effectively. Identifying these candidate entries and removing them from the Phrase Table will not only reduce the size of the Phrase Table, but should also help in improving the processing speed for generating the translations. The present paper develops a scheme based on syntactic structure and the marker hypothesis (Green 1979, The necessity of syntax markers: two experiments with artificial languages, Journal of Verbal Learning and Behavior) for reducing the size of a Phrase Table, without compromising much on the translation quality of the output, by retaining the non-redundant and meaningful parallel phrases only. The proposed scheme is complemented with an appropriate similarity measurement scheme to achieve maximum efficiency in terms of BLEU scores. Although designed for Hindi to English machine translation, the overall approach is quite general, and is expected to be easily adaptable for other language pairs as well.