Published online by Cambridge University Press: 04 June 2018
Semantic measures are used in handling different issues in several research areas, such as artificial intelligence, natural language processing, knowledge engineering, bioinformatics, and information retrieval. Hierarchical feature-based semantic measures have been proposed to estimate the semantic similarity between two concepts/words depending on the features extracted from a semantic taxonomy (hierarchy) of a given lexical source. The central issue in these measures is the constant weighting assumption that all elements in the semantic representation of the concept possess the same relevance. In this paper, a new weighting-based semantic similarity measure is proposed to address the issues in hierarchical feature-based measures. Four mechanisms are introduced to weigh the degree of relevance of features in the semantic representation of a concept by using topological parameters (edge, depth, descendants, and density) in a semantic taxonomy. With the semantic taxonomy of WordNet, the proposed semantic measure is evaluated for word semantic similarity in four gold-standard datasets. Experimental results show that the proposed measure outperforms hierarchical feature-based semantic measures in all the datasets. Comparison results also imply that the proposed measure is more effective than information-content measures in measuring semantic similarity.
This work was partially funded by the Ministry of Higher Education in Malaysia under the grant no. (FRGS/1/2016/ICT02/UKM/02/11). The first author would like to thank the University of Saba Region for its financial supports.