Article contents
Is your document novel? Let attention guide you. An attention-based model for document-level novelty detection
Published online by Cambridge University Press: 24 April 2020
Abstract
Detecting, whether a document contains sufficient new information to be deemed as novel, is of immense significance in this age of data duplication. Existing techniques for document-level novelty detection mostly perform at the lexical level and are unable to address the semantic-level redundancy. These techniques usually rely on handcrafted features extracted from the documents in a rule-based or traditional feature-based machine learning setup. Here, we present an effective approach based on neural attention mechanism to detect document-level novelty without any manual feature engineering. We contend that the simple alignment of texts between the source and target document(s) could identify the state of novelty of a target document. Our deep neural architecture elicits inference knowledge from a large-scale natural language inference dataset, which proves crucial to the novelty detection task. Our approach is effective and outperforms the standard baselines and recent work on document-level novelty detection by a margin of $\sim$ 3% in terms of accuracy.
Keywords
- Type
- Article
- Information
- Copyright
- © Cambridge University Press 2020
References
- 8
- Cited by