Published online by Cambridge University Press: 31 January 2017
This paper presents a system developed for detecting sexual predators in online chat conversations using a two-stage classification and behavioral features. A sexual predator is defined as a person who tries to obtain sexual favors in a predatory manner, usually with underage people. The proposed approach uses several text categorization methods and empirical behavioral features developed especially for the task at hand. After investigating various approaches for solving the sexual predator identification problem, we have found that a two-stage classifier achieves the best results. In the first stage, we employ a Support Vector Machine classifier to distinguish conversations having suspicious content from safe online discussions. This is useful as most chat conversations in real life do not contain a sexual predator, therefore it can be viewed as a filtering phase that enables the actual detection of predators to be done only for suspicious chats that contain a sexual predator with a very high degree. In the second stage, we detect which of the users in a suspicious discussion is an actual predator using a Random Forest classifier. The system was tested on the corpus provided by the PAN 2012 workshop organizers and the results are encouraging because, as far as we know, our solution outperforms all previous approaches developed for solving this task.
This work has been partially funded by the Sectorial Operational Programme Human Resources Development 2007–2013 of the Romanian Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132397. Moreover, Claudia Cardei would like to thank Google for the Anita Borg scholarship granted in 2014 which partly funded this work on sexual predator identification in online conversations.