Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:57:00.183Z Has data issue: false hasContentIssue false

Argumentation models and their use in corpus annotation: Practice, prospects, and challenges

Published online by Cambridge University Press:  28 February 2023

Henrique Lopes Cardoso*
Affiliation:
Laboratório de Inteligência Artificial e Ciência de Computadores (LIACC/LASI), Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Rui Sousa-Silva
Affiliation:
Centro de Linguística da Universidade do Porto (CLUP), Faculdade de Letras da Universidade do Porto, Via Panorâmica, 4150-564 Porto, Portugal
Paula Carvalho
Affiliation:
INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
Bruno Martins
Affiliation:
INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal Instituto Superior Técnico (IST), Av. Rovisco Pais, 1049-001 Lisboa, Portugal
*
*Corresponding author. E-mail: [email protected]

Abstract

The study of argumentation is transversal to several research domains, from philosophy to linguistics, from the law to computer science and artificial intelligence. In discourse analysis, several distinct models have been proposed to harness argumentation, each with a different focus or aim. To analyze the use of argumentation in natural language, several corpora annotation efforts have been carried out, with a more or less explicit grounding on one of such theoretical argumentation models. In fact, given the recent growing interest in argument mining applications, argument-annotated corpora are crucial to train machine learning models in a supervised way. However, the proliferation of such corpora has led to a wide disparity in the granularity of the argument annotations employed. In this paper, we review the most relevant theoretical argumentation models, after which we survey argument annotation projects closely following those theoretical models. We also highlight the main simplifications that are often introduced in practice. Furthermore, we glimpse other annotation efforts that are not so theoretically grounded but instead follow a shallower approach. It turns out that most argument annotation projects make their own assumptions and simplifications, both in terms of the textual genre they focus on and in terms of adapting the adopted theoretical argumentation model for their own agenda. Issues of compatibility among argument-annotated corpora are discussed by looking at the problem from a syntactical, semantic, and practical perspective. Finally, we discuss current and prospective applications of models that take advantage of argument-annotated corpora.

Type
Survey Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R., Ecker, B., Anand, P. and Walker, M. (2016). Internet argument corpus 2.0: An SQL schema for dialogic social media and the corpora to go with it. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia. European Language Resources Association (ELRA), pp. 44454452.Google Scholar
Aharoni, E., Polnarov, A., Lavee, T., Hershcovich, D., Levy, R., Rinott, R., Gutfreund, D. and Slonim, N. (2014). A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics. In Proceedings of the First Workshop on Argumentation Mining, Baltimore, Maryland. Association for Computational Linguistics, pp. 6468.10.3115/v1/W14-2109CrossRefGoogle Scholar
Aharonov, R. and Slonim, N. (2019). Watch IBM’s AI System Debate a Human Champion Live at Think 2019. https://www.ibm.com/blogs/research/2019/02/ai-debate-think-2019/ (accessed 14 April 2021).Google Scholar
Al-Khatib, K., Hou, Y. and Stede, M. (2021). Proceedings of the 8th Workshop on Argument Mining, Punta Cana, Dominican. Association for Computational Linguistics Republic.Google Scholar
Al-Khatib, K., Wachsmuth, H., Kiesel, J., Hagen, M. and Stein, B. (2016). A news editorial corpus for mining argumentation strategies. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan. The COLING 2016 Organizing Committee, pp. 34333443.Google Scholar
Allaway, E. and McKeown, K. (2020). Zero-shot stance detection: A dataset and model using generalized topic representations. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online. Association for Computational Linguistics, pp. 89138931.CrossRefGoogle Scholar
Alshomary, M., Chen, W.-F., Gurcke, T. and Wachsmuth, H. (2021). Belief-based generation of argumentative claims. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, Online. Association for Computational Linguistics, pp. 224233.10.18653/v1/2021.eacl-main.17CrossRefGoogle Scholar
Augenstein, I., Ruder, S. and Søgaard, A. (2018). Multi-task learning of pairwise sequence classification tasks over disparate label spaces. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana. Association for Computational Linguistics, pp. 1896–1906.10.18653/v1/N18-1172CrossRefGoogle Scholar
Bal, B.K. and Saint Dizier, P. (2010). Towards building annotated resources for analyzing opinions and argumentation in news editorials. In Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10), Valletta, Malta. European Languages Resources Association (ELRA), pp. 11521158.Google Scholar
Bar-Haim, R., Eden, L., Friedman, R., Kantor, Y., Lahav, D. and Slonim, N. (2020a). From arguments to key points: Towards automatic argument summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online. Association for Computational Linguistics, pp. 40294039.CrossRefGoogle Scholar
Bar-Haim, R., Kantor, Y., Eden, L., Friedman, R., Lahav, D. and Slonim, N. (2020b). Quantitative argument summarization and beyond: Cross-domain key point analysis. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online. Association for Computational Linguistics, pp. 3949.10.18653/v1/2020.emnlp-main.3CrossRefGoogle Scholar
Basile, V., Fell, M., Fornaciari, T., Hovy, D., Paun, S., Plank, B., Poesio, M. and Uma, A. (2021). We need to consider disagreement in evaluation. In Procs 1st Workshop on Benchmarking: Past, Present and Future, Online. ACL, pp. 1521.Google Scholar
Bayerl, P.S. and Paul, K.I. (2011). What determines inter-coder agreement in manual annotations? a meta-analytic investigation. Computational Linguistics 37(4), 699725.10.1162/COLI_a_00074CrossRefGoogle Scholar
Bentahar, J., Moulin, B. and Bélanger, M. (2010). A taxonomy of argumentation models used for knowledge representation. Artificial Intelligence Review 33(3), 211259.10.1007/s10462-010-9154-1CrossRefGoogle Scholar
Besnard, P. and Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence 128(1–2), 203235.10.1016/S0004-3702(01)00071-6CrossRefGoogle Scholar
Besnard, P. and Hunter, A. (2008). Elements of Argumentation. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Bhatia, V.K. (1993). Analysing Genre: Language Use in Professional Settings. London: Routledge.Google Scholar
Biber, D. (1988). Variation across Speech and Writing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Blair, J.A. (2003). Relationships among logic, dialectic and rhetoric. In Anyone Who Has a View: Theoretical Contributions to the Study of Argumentation. Dordrecht: Springer Netherlands, pp. 91107.CrossRefGoogle Scholar
Blitzer, J., Dredze, M. and Pereira, F. (2007). Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic. Association for Computational Linguistics, pp. 440447.Google Scholar
Bondarenko, A., Fröbe, M., Kiesel, J., Syed, S., Gurcke, T., Beloucif, M., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M. and Hagen, M. (2022). Overview of touché 2022: Argument retrieval: Extended abstract. In Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14, 2022, Proceedings, Part II, Berlin, Heidelberg: Springer-Verlag, pp. 339346.10.1007/978-3-030-99739-7_43CrossRefGoogle Scholar
Bondarenko, A., Gienapp, L., Fröbe, M., Beloucif, M., Ajjour, Y., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M. and Hagen, M. (2021). Overview of touché 2021: Argument retrieval: Extended abstract. In Advances in Information Retrieval: 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28–April 1, 2021, Proceedings, Part II. Berlin, Heidelberg: Springer-Verlag, pp. 574582.CrossRefGoogle Scholar
Branco, R., Branco, A., António Rodrigues, J. and Silva, J.R. (2021). Shortcutted commonsense: Data spuriousness in deep learning of commonsense reasoning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics, pp. 15041521.CrossRefGoogle Scholar
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I. and Amodei, D. (2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F. and Lin H. (eds), Advances in Neural Information Processing Systems, vol. 33, Online. Curran Associates, Inc., pp. 18771901.Google Scholar
Budzynska, K., Janier, M., Reed, C., Saint-Dizier, P., Stede, M. and Yakorska, O. (2014). A model for processing illocutionary structures and argumentation in debates. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland. European Language Resources Association (ELRA), pp. 917924.Google Scholar
Budzynska, K. and Reed, C. (2011). Whence inference. Technical report, University of Dundee.Google Scholar
Budzynska, K. and Villata, S. (2018). Processing natural language argumentation. In Baroni P., Gabbay D., Giacomin M. and van der Torre L. (eds), Handbook of Formal Argumentation. Milton Keynes, UK: College Publications, pp. 577627.Google Scholar
Burstein, J., Kukich, K., Wolff, S., Lu, C. and Chodorow, M. (1998). Enriching automated essay scoring using discourse marking. In Discourse Relations and Discourse Markers (Proceedings of the Workshop), Montreal, Quebec, Canada, pp. 1521.Google Scholar
Cabrio, E. and Villata, S. (2012). Combining textual entailment and argumentation theory for supporting online debates interactions. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Jeju Island, Korea. Association for Computational Linguistics, pp. 208212.Google Scholar
Cabrio, E. and Villata, S. (2013). A natural language bipolar argumentation approach to support users in online debate interactions†. Argument & Computation 4(3), 209230.10.1080/19462166.2013.862303CrossRefGoogle Scholar
Cabrio, E. and Villata, S. (2018). Five years of argument mining: A data-driven analysis. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, Stockholm, Sweden. International Joint Conferences on Artificial Intelligence Organization, pp. 54275433.CrossRefGoogle Scholar
Cerutti, F., Toniolo, A. and Norman, T. (2019). On natural language generation of formal argumentation. In Santini, F. and Toniolo, A. (eds), Proceedings of the 3rd Workshop on Advances In Argumentation In Artificial Intelligence co-located with the 18th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2019), CEUR Workshop Proceedings, Rende, Italy. Sun SITE Central Europe, pp. 1529.Google Scholar
Chen, C.-C., Huang, H.-H. and Chen, H.-H. (2021). From Opinion Mining to Financial Argument Mining . SpringerBriefs in Computer Science. Singapore: Springer.Google Scholar
Chen, X. and Cardie, C. (2018). Unsupervised multilingual word embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. Association for Computational Linguistics, pp. 261270.10.18653/v1/D18-1024CrossRefGoogle Scholar
Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G. and Willmott, S. (2006). Towards an argument interchange format. Knowledge Engineering Review 21(4), 293316.CrossRefGoogle Scholar
Choi, H. and Lee, H. (2018). GIST at SemEval-2018 task 12: A network transferring inference knowledge to argument reasoning comprehension task. In Proceedings of The 12th International Workshop on Semantic Evaluation, New Orleans, Louisiana. Association for Computational Linguistics, pp. 773777.CrossRefGoogle Scholar
Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L. and Stoyanov, V. (2020). Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online. Association for Computational Linguistics, pp. 84408451.CrossRefGoogle Scholar
Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman, S., Schwenk, H. and Stoyanov, V. (2018). XNLI: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. Association for Computational Linguistics, pp. 24752485.10.18653/v1/D18-1269CrossRefGoogle Scholar
Das, D. and Taboada, M. (2013). Explicit and implicit coherence relations: A corpus study. In Proceedings of the 2013 Annual Conference of the Canadian Linguistic Association.Google Scholar
Das, D. and Taboada, M. (2018). Signalling of coherence relations in discourse, beyond discourse markers. Discourse Processes 55(8), 743770.CrossRefGoogle Scholar
Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota. Association for Computational Linguistics, pp. 41714186.Google Scholar
do Carmo, R. (2012). Linguagem, Argumentação e Decisão Judiciária. Coimbra: Coimbra Editora.Google Scholar
Dragoni, M., Da Costa Pereira, C., Tettamanzi, A. G. B. and Villata, S. (2018). Combining argumentation and aspect-based opinion mining: The SMACk system. AI Communications 31(1), 7595.CrossRefGoogle Scholar
Dung, P.M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321357.10.1016/0004-3702(94)00041-XCrossRefGoogle Scholar
Durmus, E. and Cardie, C. (2018). Exploring the role of prior beliefs for argument persuasion. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana. Association for Computational Linguistics, pp. 10351045.CrossRefGoogle Scholar
Duthie, R., Budzynska, K. and Reed, C. (2016). Mining ethos in political debate. In Baroni P., Gordon T., Scheffler T. and Stede M. (eds), Computational Models of Argument. Frontiers in Artificial Intelligence and Applications, vol. 287, Netherlands. IOS Press, pp. 299310.Google Scholar
Egawa, R., Morio, G. and Fujita, K. (2019). Annotating and analyzing semantic role of elementary units and relations in online persuasive arguments. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, Florence, Italy. Association for Computational Linguistics, pp. 422428.CrossRefGoogle Scholar
Eger, S., Daxenberger, J., Stab, C. and Gurevych, I. (2018). Cross-lingual argumentation mining: Machine translation (and a bit of projection) is all you need! In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, USA. Association for Computational Linguistics, pp. 831844.Google Scholar
Elhadad, M. (1992). Generating coherent argumentative paragraphs. In COLING 1992 Volume 2: The 14th International Conference on Computational Linguistics, Nantes, France.Google Scholar
Eliot, L. (2021). Identifying a Set of Autonomous Levels for AI-Based Computational Legal Reasoning. MIT Computational Law Report. https://law.mit.edu/pub/identifyingasetofautonomouslevelsforaibasedcomputationallegalreasoning.Google Scholar
Freeman, J.B. (1991). Dialectics and the Macrostructure of Arguments: A Theory of Argument Structure . Pragmatics and Discourse Analysis Series. Berlin and New York: Foris Publications.10.1515/9783110875843CrossRefGoogle Scholar
Freeman, J.B. (2011). Argument Structure: Representation and Theory . Argumentation Library. Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
Fu, Z., Tan, X., Peng, N., Zhao, D. and Yan, R. (2018). Style transfer in text: Exploration and evaluation. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, vol. 32, New Orleans.10.1609/aaai.v32i1.11330CrossRefGoogle Scholar
Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M. and Wichmann, F.A. (2020). Shortcut learning in deep neural networks. Nature Machine Intelligence 2, 665673.CrossRefGoogle Scholar
Ghosh, D., Muresan, S., Wacholder, N., Aakhus, M. and Mitsui, M. (2014). Analyzing argumentative discourse units in online interactions. In Proceedings of the First Workshop on Argumentation Mining, Baltimore, Maryland. Association for Computational Linguistics, pp. 3948.CrossRefGoogle Scholar
Gilbert, G.N. (1976). The transformation of research findings into scientific knowledge. Social Studies of Science 6(3–4), 281306.CrossRefGoogle Scholar
Goudas, T., Louizos, C., Petasis, G. and Karkaletsis, V. (2014). Argument extraction from news, blogs, and social media. In Likas A., Blekas K. and Kalles D. (eds), Artificial Intelligence: Methods and Applications. Cham: Springer International Publishing, pp. 287299.CrossRefGoogle Scholar
Govier, T. (2010). A Practical Study of Argument, 7th Edn. Boston: Cengage Learning.Google Scholar
Green, N.L., Branon, M. and Roosje, L. (2019). Argument schemes and visualization software for critical thinking about international politics. Argument & Computation 10(1), 4153.CrossRefGoogle Scholar
Grosse, K., González, M., Chesñevar, C. and Maguitman, A. (2015). Integrating argumentation and sentiment analysis for mining opinions from twitter. AI Communications 28, 387401.10.3233/AIC-140627CrossRefGoogle Scholar
Habernal, I. and Gurevych, I. (2016a). What makes a convincing argument? empirical analysis and detecting attributes of convincingness in web argumentation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas. Association for Computational Linguistics, pp. 12141223.CrossRefGoogle Scholar
Habernal, I. and Gurevych, I. (2016b). Which argument is more convincing? analyzing and predicting convincingness of web arguments using bidirectional LSTM. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany. Association for Computational Linguistics, pp. 15891599.10.18653/v1/P16-1150CrossRefGoogle Scholar
Habernal, I. and Gurevych, I. (2017). Argumentation mining in user-generated web discourse. Computational Linguistics 43(1), 125179.10.1162/COLI_a_00276CrossRefGoogle Scholar
Habernal, I., Wachsmuth, H., Gurevych, I. and Stein, B. (2018). The argument reasoning comprehension task: Identification and reconstruction of implicit warrants. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana. Association for Computational Linguistics, pp. 1930–1940.CrossRefGoogle Scholar
Haddadan, S., Cabrio, E. and Villata, S. (2018). Annotation of argument components in political debates data. In Sandra Kübler, H.Z. (ed.), Proceedings of the Workshop on Annotation in Digital Humanities, Sofia, Bulgaria. CEUR Workshop Proceedings, pp. 1216.Google Scholar
Haddadan, S., Cabrio, E. and Villata, S. (2019). Yes, we can! mining arguments in 50 years of US presidential campaign debates. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, pp. 46844690.CrossRefGoogle Scholar
Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Mart, M.A., Màrquez, L., Meyers, A., Nivre, J., Padó, S., Štěpánek, J., Straňák, P., Surdeanu, M., Xue, N. and Zhang, Y. (2009). The CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task, Boulder, Colorado. Association for Computational Linguistics, pp. 118.CrossRefGoogle Scholar
Hansen, H. and Walton, D. (2013). Argument kinds and argument roles in the ontario provincial election, 2011. Journal of Argumentation in Context 2, 226258.CrossRefGoogle Scholar
Hardalov, M., Arora, A., Nakov, P. and Augenstein, I. (2021). Cross-domain label-adaptive stance detection. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics, pp. 90119028.10.18653/v1/2021.emnlp-main.710CrossRefGoogle Scholar
Hargie, O., Dickson, D. and Tourish, D. (2004). Communication Skills for Effective Management. Basingstoke: Palgrave.10.1007/978-1-4039-3893-0CrossRefGoogle Scholar
Hautli-Janisz, A., Kikteva, Z., Siskou, W., Gorska, K., Becker, R. and Reed, C. (2022). Qt30: A corpus of argument and conflict in broadcast debate. In Proceedings of the Language Resources and Evaluation Conference, Marseille, France. European Language Resources Association.Google Scholar
Hewett, F., Prakash Rane, R., Harlacher, N. and Stede, M. (2019). The utility of discourse parsing features for predicting argumentation structure. In Proceedings of the 6th Workshop on Argument Mining, Florence, Italy. Association for Computational Linguistics, pp. 98103.CrossRefGoogle Scholar
Hidey, C., Musi, E., Hwang, A., Muresan, S. and McKeown, K. (2017). Analyzing the semantic types of claims and premises in an online persuasive forum. In Proceedings of the 4th Workshop on Argument Mining, Copenhagen, Denmark. Association for Computational Linguistics, pp. 1121.CrossRefGoogle Scholar
Hu, Z., Lee, R.K. and Aggarwal, C.C. (2020). Text style transfer: A review and experiment evaluation. CoRR, abs/2010.12742.Google Scholar
Hua, X., Nikolov, M., Badugu, N. and Wang, L. (2019). Argument mining for understanding peer reviews. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota. Association for Computational Linguistics, pp. 21312137.10.18653/v1/N19-1219CrossRefGoogle Scholar
Hua, X. and Wang, L. (2018). Neural argument generation augmented with externally retrieved evidence. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia. Association for Computational Linguistics, pp. 219230.10.18653/v1/P18-1021CrossRefGoogle Scholar
Huber, R. and Snider, A.C. (2006). Influencing Through Argument , updated Edn. New York: International Debate Education Association.Google Scholar
Janier, M., Lawrence, J. and Reed, C. (2014). OVA+: An argument analysis interface. In Parsons S., Oren N., Reed C. and Cerutti F. (eds), Proceedings of the Fifth International Conference on Computational Models of Argument (COMMA 2014), Pitlochry. IOS Press, pp. 463464.Google Scholar
Janier, M. and Reed, C. (2017). Towards a theory of close analysis for dispute mediation discourse. Argumentation 31(1), 4582.CrossRefGoogle Scholar
Karamanou, A., Loutas, N. and Tarabanis, K. (2011). Argvis: Structuring political deliberations using innovative visualisation technologies. In Tambouris E., Macintosh A. and de Bruijn H. (eds), Electronic Participation. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 8798.10.1007/978-3-642-23333-3_8CrossRefGoogle Scholar
Katzav, J. and Reed, C.A. (2004). On argumentation schemes and the natural classification of arguments. Argumentation 18(2), 239259.CrossRefGoogle Scholar
Kerbrat-Orecchioni, C. (2004). Introducing polylogue. Journal of Pragmatics 36(1), 124.CrossRefGoogle Scholar
Kienpointner, M. (1986). Towards a typology of argument schemes. In Argumentation: Across the Lines of Discipline, Proceedings of the Conference on Argumentation. Amsterdam: Amsterdam University Press, pp. 275287.Google Scholar
Kienpointner, M. (1992). How to classify arguments. In Argumentation Illuminated. Amsterdam: Amsterdam University Press, pp. 178188.Google Scholar
Kirschner, C., Eckle-Kohler, J. and Gurevych, I. (2015). Linking the thoughts: Analysis of argumentation structures in scientific publications. In Proceedings of the 2nd Workshop on Argumentation Mining, Denver, CO. Association for Computational Linguistics, pp. 111.CrossRefGoogle Scholar
Kirschner, P.A., Shum, S.J.B. and Carr, C.S. (eds) (2003). Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making. London, UK: Springer.CrossRefGoogle Scholar
Küçük, D. and Can, F. (2020). Stance detection: A survey. ACM Computing Surveys 53(1), 137.Google Scholar
Lauscher, A., Glavaš, G. and Eckert, K. (2018a). ArguminSci: A tool for analyzing argumentation and rhetorical aspects in scientific writing. In Proceedings of the 5th Workshop on Argument Mining, Brussels, Belgium. Association for Computational Linguistics, pp. 2228.CrossRefGoogle Scholar
Lauscher, A., Glavaš, G. and Ponzetto, S.P. (2018b). An argument-annotated corpus of scientific publications. In Proceedings of the 5th Workshop on Argument Mining, Brussels, Belgium. Association for Computational Linguistics, pp. 4046.CrossRefGoogle Scholar
Lauscher, A., Wachsmuth, H., Gurevych, I. and Glavaš, G. (2022). Scientia Potentia Est–On the role of knowledge in computational argumentation. Transactions of the Association for Computational Linguistics 10, 13921422.CrossRefGoogle Scholar
Lawrence, J., Janier, M. and Reed, C. (2015). Working with open argument corpora. In Proceedings of the 1st European Conference on Argumentation (ECA 2015), Lisbon. College Publications.Google Scholar
Lawrence, J. and Reed, C. (2019). Argument mining: A survey. Computational Linguistics 45(4), 765818.10.1162/coli_a_00364CrossRefGoogle Scholar
Lewiński, M. and Aakhus, M. (2014). Argumentative polylogues in a dialectical framework: A methodological inquiry. Argumentation 28(2), 161185.10.1007/s10503-013-9307-xCrossRefGoogle Scholar
Lewiński, M. and Mohammed, D. (2019). The 2015 paris climate conference: Arguing for the fragile consensus in global multilateral diplomacy. Journal of Argumentation in Context 8(1), 6590.CrossRefGoogle Scholar
Lippi, M. and Torroni, P. (2016). Argumentation mining: State of the art and emerging trends. ACM Transactions on Internet Technology 16(2), 10:110:25.CrossRefGoogle Scholar
Liu, P., Qiu, X. and Huang, X. (2017). Adversarial multi-task learning for text classification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada. Association for Computational Linguistics, pp. 110.10.18653/v1/P17-1001CrossRefGoogle Scholar
Lumer, C. (2011). Argument schemes – an epistemological approach. In Argumentation: Cognition and Community. Proceedings of the 9th International Conference of the Ontario Society for the Study of Argumentation (OSSA), pp. 132.Google Scholar
Lumley, T. and McNamara, T. (1995). Rater characteristics and rater bias: Implications for training. Language Testing 12(1), 5471.CrossRefGoogle Scholar
Lytos, A., Lagkas, T., Sarigiannidis, P. and Bontcheva, K. (2019). The evolution of argumentation mining: From models to social media and emerging tools. Information Processing & Management 56(6), 102055.CrossRefGoogle Scholar
Macagno, F., Walton, D. and Reed, C. (2017). Argumentation schemes: History, classifications, and computational applications. Journal of Logics and their Applications 4(8), 24932556.Google Scholar
Mann, W.C. and Thompson, S.A. (1988). Rhetorical structure theory: Toward a functional theory of text organization. Text 8(3), 243281.Google Scholar
Menini, S., Cabrio, E., Tonelli, S. and Villata, S. (2018). Never retreat, never retract: Argumentation analysis for political speeches. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), pp. 48894896.CrossRefGoogle Scholar
Menini, S., Nanni, F., Ponzetto, S.P. and Tonelli, S. (2017). Topic-based agreement and disagreement in US electoral manifestos. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark. Association for Computational Linguistics, pp. 29382944.10.18653/v1/D17-1318CrossRefGoogle Scholar
Mochales, R. and Ieven, A. (2009). Creating an argumentation corpus: Do theories apply to real arguments?: A case study on the legal argumentation of the ECHR. In Proceedings of the 12th International Conference on Artificial Intelligence and Law, ICAIL’09, New York, NY, USA. ACM, pp. 2130.CrossRefGoogle Scholar
Mochales, R. and Moens, M. (2011). Argumentation mining. Artificial Intelligence and Law 19(1), 122.CrossRefGoogle Scholar
Moens, M.-F. (2018). Argumentation mining: How can a machine acquire common sense and world knowledge? Argument and Computation 9, 114.CrossRefGoogle Scholar
Musi, E. and Aakhus, M. (2018). Discovering argumentative patterns in energy polylogues: A macroscope for argument mining. Argumentation 32(3), 397430.CrossRefGoogle Scholar
Musi, E., Ghosh, D. and Muresan, S. (2016). Towards feasible guidelines for the annotation of argument schemes. In Proceedings of the Third Workshop on Argument Mining (ArgMining2016), Berlin, Germany. Association for Computational Linguistics, pp. 8293.10.18653/v1/W16-2810CrossRefGoogle Scholar
Musi, E., Stede, M., Kriese, L., Muresan, S. and Rocci, A. (2018). A multi-layer annotated corpus of argumentative text: From argument schemes to discourse relations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018), Miyazaki, Japan. European Languages Resources Association (ELRA).Google Scholar
Nguyen, Q.V., Duong, C.T., Nguyen, T.T., Weidlich, M., Aberer, K., Yin, H. and Zhou, X. (2017). Argument discovery via crowdsourcing. The VLDB Journal 26(4), 511535.CrossRefGoogle Scholar
Nute, D. (1994). Defeasible logic. In Gabbay D.M., Hogger C.J. and Robinson J.A. (eds), Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 3). New York, NY, USA: Oxford University Press, Inc., pp. 353395.Google Scholar
O’Keefe, D.J. (1977). Two concepts of argument. The Journal of the American Forensic Association 13(3), 121128.Google Scholar
O’Neill, J.M., Laycock, C. and Scales, R.L. (1925). Argumentation and Debate. London: MacMillan.Google Scholar
Opitz, J. and Frank, A. (2019). Dissecting content and context in argumentative relation analysis. In Proceedings of the 6th Workshop on Argument Mining, Florence, Italy. Association for Computational Linguistics, pp. 2534.10.18653/v1/W19-4503CrossRefGoogle Scholar
Park, J. and Cardie, C. (2014). Identifying appropriate support for propositions in online user comments. In Proceedings of the First Workshop on Argumentation Mining, Baltimore, Maryland. Association for Computational Linguistics, pp. 2938.10.3115/v1/W14-2105CrossRefGoogle Scholar
Park, J. and Cardie, C. (2018). A corpus of eRulemaking user comments for measuring evaluability of arguments. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).Google Scholar
Peldszus, A. and Stede, M. (2013). From argument diagrams to argumentation mining in texts: A survey. International Journal of Cognitive Informatics and Natural Intelligence 7(1), 131.CrossRefGoogle Scholar
Peldszus, A. and Stede, M. (2016). An annotated corpus of argumentative microtexts. In Mohammed D. and Lewinski M. (eds), Argumentation and Reasoned Action - Proceedings of the 1st European Conference on Argumentation, Lisbon, 2015. London: College Publications.Google Scholar
Perelman, C. and Olbrechts-Tyteca, L. (1958). La nouvelle rhétorique. Traité de l’argumentation. Paris: Presses Universitaires de France.Google Scholar
Perelman, C. and Olbrechts-Tyteca, L. (1969). The New Rhetoric: A Treatise on Argumentation. Notre Dame, IN: University of Notre Dame Press.Google Scholar
Pfeiffer, J., Vulić, I., Gurevych, I. and Ruder, S. (2020). MAD-X: An adapter-based framework for multi-task cross-lingual transfer. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online. Association for Computational Linguistics, pp. 76547673.CrossRefGoogle Scholar
Pinto, A.G., Lopes Cardoso, H., Duarte, I.M., Warrot, C.V. and Sousa-Silva, R. (2020). Biased language detection in court decisions. In Analide C., Novais P., Camacho D. and Yin H. (eds), Intelligent Data Engineering and Automated Learning – IDEAL 2020. Cham: Springer International Publishing, pp. 402410.CrossRefGoogle Scholar
Plank, B. (2016). What to do about non-standard (or non-canonical) language in NLP. In Dipper S., Neubarth F. and Zinsmeister H. (eds), Proceedings of the 13th Conference on Natural Language Processing, KONVENS 2016. Bochumer Linguistische Arbeitsberichte, vol. 16, Bochum, Germany.Google Scholar
Pollock, J.L. (1995). Cognitive Carpentry: A Blueprint for How to Build a Person. Cambridge, MA, USA: MIT Press.CrossRefGoogle Scholar
Poth, C., Pfeiffer, J., Rücklé, A. and Gurevych, I. (2021). What to pre-train on? Efficient intermediate task selection. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics, pp. 1058510605.CrossRefGoogle Scholar
Poudyal, P., Savelka, J., Ieven, A., Moens, M.F., Goncalves, T. and Quaresma, P. (2020). ECHR: Legal corpus for argument mining. In Proceedings of the 7th Workshop on Argument Mining, Online. Association for Computational Linguistics, pp. 6775.Google Scholar
Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A. and Webber, B. (2008). The Penn discourse TreeBank 2.0. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco. European Language Resources Association (ELRA).Google Scholar
Pruksachatkun, Y., Phang, J., Liu, H., Htut, P.M., Zhang, X., Pang, R.Y., Vania, C., Kann, K. and Bowman, S.R. (2020). Intermediate-task transfer learning with pretrained language models: When and why does it work? In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online. Association for Computational Linguistics, pp. 52315247.CrossRefGoogle Scholar
Pustejovsky, J. and Stubbs, A. (2012). Natural Language Annotation for Machine Learning. Sebastopol, CA: O’Reilly.Google Scholar
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I. (2019). Language models are unsupervised multitask learners. https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf.Google Scholar
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. and Liu, P.J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research 21(140), 167.Google Scholar
Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S. and Sonenberg, L. (2003). Argumentation-based negotiation. Knowledge Engineering Review 18(4), 343375.CrossRefGoogle Scholar
Rahwan, I. and Reed, C. (2009). The argument interchange format. In Argumentation in Artificial Intelligence. Dordrecht: Springer, pp. 383402.10.1007/978-0-387-98197-0_19CrossRefGoogle Scholar
Rahwan, I., Zablith, F. and Reed, C. (2007). Laying the foundations for a world wide argument web. Artificial Intelligence 171(10), 897921.10.1016/j.artint.2007.04.015CrossRefGoogle Scholar
Ramponi, A. and Plank, B. (2020). Neural unsupervised domain adaptation in NLP—A survey. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain (Online). International Committee on Computational Linguistics, pp. 68386855.10.18653/v1/2020.coling-main.603CrossRefGoogle Scholar
Reed, C. and Budzynska, K. (2011). How dialogues create arguments. In Proceedings of the 7th Conference of the International Society for the Study of Argumentation.Google Scholar
Reed, C. and Long, D. (1997). Persuasive monologue. In Proceedings of the 2nd International Conference of the Ontario Society for the Study of Argumentation (OSSA).Google Scholar
Reed, C., Palau, R.M., Rowe, G. and Moens, M.-F. (2008). Language resources for studying argument. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco. European Language Resources Association (ELRA).Google Scholar
Reed, C. and Rowe, G. (2004). Araucaria: Software for argument analysis, diagramming and representation. International Journal of AI Tools 14, 961980.CrossRefGoogle Scholar
Reed, C. and Rowe, G. (2005). Translating toulmin diagrams: Theory neutrality in argument representation. Argumentation 19(3), 267286.CrossRefGoogle Scholar
Reed, C. and Walton, D. (2003). Argumentation schemes in argument-as-process and argument-as-product. In Proceedings of the Conference Celebrating Informal Logic @25, Windsor, ON.Google Scholar
Reed, C., Walton, D. and Macagno, F. (2007). Argument diagramming in logic, law and artificial intelligence. Knowledge Engineering Review 22(1), 87109.CrossRefGoogle Scholar
Reisert, P., Inoue, N., Okazaki, N. and Inui, K. (2015). A computational approach for generating toulmin model argumentation. In Proceedings of the 2nd Workshop on Argumentation Mining, Denver, CO. Association for Computational Linguistics, pp. 4555.CrossRefGoogle Scholar
Reisert, P., Inoue, N., Okazaki, N. and Inui, K. (2017a). A corpus of deep argumentative structures as an explanation to argumentative relations. arXiv:1712.02480.Google Scholar
Reisert, P., Inoue, N., Okazaki, N. and Inui, K. (2017b). Deep argumentative structure analysis as an explanation to argumentative relations. In Proceedings of The 23rd Annual Meeting of the Association for Natural Language Processing, pp. 3841.Google Scholar
Rigotti, E. and Greco, S. (2019). Inference in Argumentation: A Topics-Based Approach to Argument Schemes . Argumentation Library. Cham: Springer.CrossRefGoogle Scholar
Rigotti, E. and Greco Morasso, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In Muller Mirza N. and Perret-Clermont A.-N. (eds), Argumentation and Education: Theoretical Foundations and Practices. Boston, MA: Springer US, pp. 966.CrossRefGoogle Scholar
Rigotti, E. and Greco Morasso, S. (2010). Comparing the argumentum model of topics to other contemporary approaches to argument schemes: The procedural and material components. Argumentation 24(4), 489512.CrossRefGoogle Scholar
Rissland, E. (1988). Artificial intelligence and legal reasoning: A discussion of the field and gardner’s book. AI Magazine 9(3), 45.Google Scholar
Rocha, G., Leite, B., Trigo, L., Cardoso, H.L., Sousa-Silva, R., Carvalho, P., Martins, B. and Won, M. (2022a). Predicting argument density from multiple annotations. In Rosso P., Basile V., Martínez R., Métais E. and Meziane F. (eds), Natural Language Processing and Information Systems. Cham: Springer International Publishing, pp. 227239.CrossRefGoogle Scholar
Rocha, G., Trigo, L., Lopes Cardoso, H., Sousa-Silva, R., Carvalho, P., Martins, B. and Won, M. (2022b). Annotating arguments in a corpus of opinion articles. In Proceedings of the Language Resources and Evaluation Conference, Marseille, France. European Language Resources Association, pp. 1890–1899.Google Scholar
Rodrigues, F., Pereira, F. and Ribeiro, B. (2013). Learning from multiple annotators: Distinguishing good from random labelers. Pattern Recognition Letters 34(12), 14281436.CrossRefGoogle Scholar
Rowe, G. and Reed, C. (2008). Argument diagramming: The araucaria project. In Okada A., Shum S.B. and Sherborne T. (eds), Knowledge Cartography: Software Tools and Mapping Techniques. London: Springer London, pp. 164181.CrossRefGoogle Scholar
Ruder, S. (2017). An overview of multi-task learning in deep neural networks. ArXiv, abs/1706.05098.Google Scholar
Ruder, S., Bingel, J., Augenstein, I. and Søgaard, A. (2019a). Latent multi-task architecture learning. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, vol. 33, Honolulu, pp. 48224829.CrossRefGoogle Scholar
Ruder, S., Vulić, I. and Søgaard, A. (2019b). A survey of cross-lingual word embedding models. Artificial Intelligence Research 65, 569631.CrossRefGoogle Scholar
Schaefer, R. and Stede, M. (2021). Argument mining on twitter: A survey. Information Technology 63(1), 4558.Google Scholar
Schiller, B., Daxenberger, J. and Gurevych, I. (2021a). Aspect-controlled neural argument generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online. Association for Computational Linguistics, pp. 380396.CrossRefGoogle Scholar
Schiller, B., Daxenberger, J. and Gurevych, I. (2021b). Stance detection benchmark: How robust is your stance detection? KI - Künstliche Intelligenz.CrossRefGoogle Scholar
Schnitker, S.A. and Emmons, R.A. (2013). Hegel’s thesis-antithesis-synthesis model. In Runehov A.L.C. and Oviedo L. (eds), Encyclopedia of Sciences and Religions. Dordrecht: Springer Netherlands, pp. 978978.CrossRefGoogle Scholar
Schröder, F. and Biemann, C. (2020). Estimating the influence of auxiliary tasks for multi-task learning of sequence tagging tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online. Association for Computational Linguistics, pp. 29712985.CrossRefGoogle Scholar
Schuster, S., Gupta, S., Shah, R. and Lewis, M. (2019). Cross-lingual transfer learning for multilingual task oriented dialog. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota. Association for Computational Linguistics, pp. 37953805.10.18653/v1/N19-1380CrossRefGoogle Scholar
Sharma, S., Zheng, G. and Awadallah, A.H. (2021). Metaxt: Meta cross-task transfer between disparate label spaces. CoRR, abs/2109.04240.Google Scholar
Simosi, M. (2003). Using toulmin’s framework for the analysis of everyday argumentation: Some methodological considerations. Argumentation 17(2), 185202.CrossRefGoogle Scholar
Skeppstedt, M., Peldszus, A. and Stede, M. (2018). More or less controlled elicitation of argumentative text: Enlarging a microtext corpus via crowdsourcing. In Proceedings of the 5th Workshop on Argument Mining, Brussels, Belgium. Association for Computational Linguistics, pp. 155163.CrossRefGoogle Scholar
Snow, R., O’Connor, B., Jurafsky, D. and Ng, A. (2008). Cheap and fast – but is it good? evaluating non-expert annotations for natural language tasks. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, Honolulu, Hawaii. Association for Computational Linguistics, pp. 254263.Google Scholar
Spliethöver, M. and Wachsmuth, H. (2020). Argument from old man’s view: Assessing social bias in argumentation. In Proceedings of the 7th Workshop on Argument Mining, Online. Association for Computational Linguistics, pp. 7687.Google Scholar
Stab, C. and Gurevych, I. (2014). Annotating argument components and relations in persuasive essays. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland. Dublin City University and Association for Computational Linguistics, pp. 15011510.Google Scholar
Stab, C. and Gurevych, I. (2017). Parsing argumentation structures in persuasive essays. Computational Linguistics 43(3), 619659.CrossRefGoogle Scholar
Stab, C., Miller, T., Schiller, B., Rai, P. and Gurevych, I. (2018). Cross-topic argument mining from heterogeneous sources. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. Association for Computational Linguistics, pp. 36643674.CrossRefGoogle Scholar
Stede, M. and Schneider, J. (2018). Argumentation Mining. Morgan & Claypool Publishers.Google Scholar
Swales, J.M. (1990). Genre Analysis: English in Academic and Research Settings. Cambridge: Cambridge University Press.Google Scholar
Teufel, S. (1998). Meta-discourse markers and problem-structuring in scientific articles. In Discourse Relations and Discourse Markers.Google Scholar
Thomas, S.N. (1986). Practical Reasoning in Natural Language, 3rd Edn. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Tjong Kim Sang, E.F. and Veenstra, J. (1999). Representing text chunks. In Ninth Conference of the European Chapter of the Association for Computational Linguistics, Bergen, Norway. Association for Computational Linguistics, pp. 173179.Google Scholar
Toulmin, S.E. (1958). The Uses of Argument. Cambridge: Cambridge University Press.Google Scholar
van Eemeren, F.H. (2001). Crucial Concepts in Argumentation Theory. Amsterdam: Amsterdam University Press.CrossRefGoogle Scholar
van Eemeren, F.H. (2018). Argumentation Theory: A Pragma-Dialectical Perspective. Cham: Springer Verlag.CrossRefGoogle Scholar
van Eemeren, F.H., Garssen, B., Krabbe, E.C.W., Snoeck Henkemans, A.F., Verheij, B. and Wagemans, J.H. (2014). Handbook of Argumentation Theory . Springer Reference. Dordrecht: Springer Netherlands.Google Scholar
van Eemeren, F.H. and Grootendorst, R. (1984). Speech Acts in Argumentative Discussions. Berlin, New York: De Gruyter Mouton.CrossRefGoogle Scholar
van Eemeren, F.H. and Grootendorst, R. (1987). Fallacies in pragma-dialectical perspective. Argumentation 1(3), 283301.CrossRefGoogle Scholar
van Eemeren, F.H. and Grootendorst, R. (2004). A Systematic Theory of Argumentation: The Pragma-Dialectical Approach. Cambridge: Cambridge University Press.Google Scholar
van Eemeren, F.H., Houtlosser, P. and Snoeck Henkemans, A.F. (2007). Argumentative Indicators in Discourse: A Pragma-Dialectical Study. Dordrecht: Springer.CrossRefGoogle Scholar
van Eemeren, F.H., Jackson, S. and Jacobs, S. (2015). Argumentation. In Reasonableness and Effectiveness in Argumentative Discourse: Fifty Contributions to the Development of Pragma-Dialectics. Cham: Springer International Publishing, pp. 325.CrossRefGoogle Scholar
van Gelder, T. (2001). The reason! project. The Skeptic 21(2), 912.Google Scholar
Visser, J., Budzynska, K. and Reed, C. (2017). A critical discussion game for prohibiting fallacies. Logic and Logical Philosophy 27(4), 491515.Google Scholar
Visser, J., Konat, B., Duthie, R., Koszowy, M., Budzynska, K. and Reed, C. (2020). Argumentation in the 2016 US presidential elections: Annotated corpora of television debates and social media reaction. Language Resources and Evaluation 54, 123154.CrossRefGoogle Scholar
Visser, J., Lawrence, J., Reed, C., Wagemans, J. and Walton, D. (2021). Annotating argument schemes. Argumentation 35(1), 101139.CrossRefGoogle ScholarPubMed
Visser, J., Lawrence, J., Wagemans, J. and Reed, C. (2018). Revisiting computational models of argument schemes: Classification, annotation, comparison. In Modgil S., Budzynska, K., Lawrence, J. and Budzynska, K. (eds), Computational Models of Argument - Proceedings of COMMA 2018. Frontiers in Artificial Intelligence and Applications, vol. 305, Netherlands. IOS Press, pp. 313324.Google Scholar
Wachsmuth, H., Naderi, N., Hou, Y., Bilu, Y., Prabhakaran, V., Thijm, T.A., Hirst, G. and Stein, B. (2017). Computational argumentation quality assessment in natural language. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, Valencia, Spain. Association for Computational Linguistics, pp. 176187.CrossRefGoogle Scholar
Wagemans, J. (2016a). Constructing a periodic table of arguments. In Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), pp. 112.CrossRefGoogle Scholar
Wagemans, J. (2019). Four basic argument forms. Research in Language 17, 5769.CrossRefGoogle Scholar
Wagemans, J.H.M. (2016b). Argumentative patterns for justifying scientific explanations. Argumentation 30(1), 97108.CrossRefGoogle Scholar
Walker, M., Tree, J.F., Anand, P., Abbott, R. and King, J. (2012). A corpus for research on deliberation and debate. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey. European Language Resources Association (ELRA), pp. 812817.Google Scholar
Walton, D. and Macagno, F. (2015). A classification system for argumentation schemes. Argument & Computation 6(3), 219245.CrossRefGoogle Scholar
Walton, D., Reed, C. and Macagno, F. (2008). Argumentation Schemes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Walton, D.N. (1996). Argumentation Schemes for Presumptive Reasoning. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Walton, D.N. (2006). Fundamentals of Critical Argumentation . Critical Reasoning and Argumentation. Cambridge: Cambridge University Press.Google Scholar
Wang, X., Shi, W., Kim, R., Oh, Y., Yang, S., Zhang, J. and Yu, Z. (2019). Persuasion for good: Towards a personalized persuasive dialogue system for social good. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, pp. 56355649.CrossRefGoogle Scholar
Wegerif, R. (2008). Dialogic or dialectic? the significance of ontological assumptions in research on educational dialogue. British Educational Research Journal 34(3), 347361.CrossRefGoogle Scholar
Wyner, A., Mochales-Palau, R., Moens, M.-F. and Milward, D. (2010). Approaches to text mining arguments from legal cases. In Francesconi E., Montemagni S., Peters W. and Tiscornia D. (eds), Semantic Processing of Legal Texts: Where the Language of Law Meets the Law of Language. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 6079.CrossRefGoogle Scholar
Wyner, A., Schneider, J.A., Atkinson, K. and Bench-Capon, T. (2012). Semi-automated argumentative analysis of online product reviews. In Computational Models of Argument - Proceedings of COMMA 2012. Frontiers in Artificial Intelligence and Applications, vol. 1, USA. IOS Press, pp. 4350.Google Scholar
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R. and Le, Q.V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Wallach H., Larochelle H., Beygelzimer A., d’Alché-Buc F., Fox E. and Garnett R. (eds), Advances in Neural Information Processing Systems, vol. 32, Vancouver, Canada. Curran Associates, Inc.Google Scholar
Ye, L.R. and Johnson, P.E. (1995). The impact of explanation facilities on user acceptance of expert systems advice. MIS Quarterly 19(2), 157172.CrossRefGoogle Scholar
Zhang, G., Nulty, P. and Lillis, D. (2022). A decade of legal argumentation mining: Datasets and approaches. In Rosso P., Basile V., Martínez, R., Métais E. and Meziane F. (eds), Natural Language Processing and Information Systems. Cham: Springer International Publishing, pp. 240252.CrossRefGoogle Scholar
Zukerman, I., McConachy, R. and George, S. (2000). Using argumentation strategies in automated argument generation. In INLG’2000 Proceedings of the First International Conference on Natural Language Generation, Mitzpe Ramon, Israel. Association for Computational Linguistics, pp. 5562.CrossRefGoogle Scholar