Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T09:43:55.075Z Has data issue: false hasContentIssue false

Wiener-Hopf equation and Fredholm property of the Goursat problem in Gevrey space

Published online by Cambridge University Press:  22 January 2016

Masatake Miyake
Affiliation:
Department of Mathematics, School of Science, Nagoya University, Nagoya 464-01, Japan
Masafumi Yoshino
Affiliation:
Faculty of Economics, Chuo University, Higashinakano, Hachioji, Tokyo 192-03, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the study of ordinary differential equations, Malgrange ([Ma]) and Ramis ([R1], [R2]) established index theorem in (formal) Gevrey spaces, and the notion of irregularity was nicely defined for the study of irregular points. In their studies, a Newton polygon has a great advantage to describe and understand the results in visual form. From this point of view, Miyake ([M2], [M3], [MH]) studied linear partial differential operators on (formal) Gevrey spaces and proved analogous results, and showed the validity of Newton polygon in the study of partial differential equations (see also [Yn]).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1994

References

[B] Baxter, G., A norm inequality for a “finite section” Wiener-Hopf equation, Illinois J. Math., 7(1963), 97103.Google Scholar
[CSW] Calderón, A., Spitzer, F. and Widom, H., Inversion of Toeplitz matrices, Illinois J. Math., 3 (1959), 490498.Google Scholar
[G] Gårding, L., Une variante de la méthode de majoration de Cauchy, Acta Math., 114(1965), 143158.Google Scholar
[GS] Grenander, U. and Szego, G., Toeplitz forms and their applications, Chelsea Publ, New York, 1984.Google Scholar
[H] Hörmander, L., Linear partial differential operators, Springer Verlag, Berlin, New York, 1963.Google Scholar
[L] Leray, L., Caractère non fredholmien du problème de Goursat, J. Math. Pures Appl, 53(1974), 133136.Google Scholar
[LP] Leray, J. et Pisot, C., Une fonction de la théorie des nombres, J. Math. Pures Appl., 53(1974), 137145.Google Scholar
[Ma] Malgrange, B., Sur les points singuliers des équations différentielles linéaires, Enseign. Math., 20 (1970), 146176.Google Scholar
[M1] Miyaké, M., Global and local Goursat problems in a class of holomorphic or partially holomorphic functions, J. Differential Equations, 39 (1981), 445463.Google Scholar
[M2] Miyaké, M., Newton polygons and formal Gevery indices in the Cauchy-Goursat-Fuchs type equations, J. Math. Soc. Japan, 43 (1991), 305330.Google Scholar
[M3] Miyaké, M., An operator and its nature in Gevrey functions, Tsukuba. J. Math., 17 no.1 (1993), 8598.Google Scholar
[MH] Miyaké, M. and Hashimoto, Y., Newton polygons and Gevrey indices for partial differential operators, Nagoya Math. J., 128 (1992), 1547.Google Scholar
[R1] Ramis, J. P., Dévissage Gevrey, Astérisque, 59/60 (1978), 173204.Google Scholar
[R2] Ramis, J. P., Théorèmes d’indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc, 48 no. 296 (1984).Google Scholar
[S] Szegö, G., Beitrage zur Theorie der Toeplitzschen Formen, Math. Zeitschrift, 6 (1920), 167202.Google Scholar
[W] Wagschal, C., Une generalization du problème de Goursat pour des systèmes d’équations intégro-différentielles holomorphes ou partiellement holomorpes, J. Math. Pures Appl, 53 (1974), 99132.Google Scholar
[Yn] Yonemura, A., Newton polygons and formal Gevrey classes, Publ. Res. Inst. Math. Sci., 26 (1990), 197204.Google Scholar
[Ys1] Yoshino, M., Remarks on the Goursat problems, Tokyo J. Math., 4 (1980), 115130.Google Scholar
[Ys2] Yoshino, M., Spectral property of Goursat problem, Tokyo J. Math., 4 (1981), 5571.Google Scholar
[Ys3] Yoshino, M., On the solvability of Goursat problems and a function of number theory, Duke Math. J., 48 (1981), 685696.Google Scholar
[Ys4] Yoshino, M., On the solvability of nonlinear Goursat problems, Comm. Partial Differential Equations, 8 (1983), 13751407.Google Scholar
[Ys5] Yoshino, M., An application of generalized implicit function theorem to Goursat problems for nonlinear Leray-Volevich systems, J. Differential. Equations, 57 (1985), 4469.Google Scholar