Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:45:32.412Z Has data issue: false hasContentIssue false

Verma Modules and Preprojective Algebras

Published online by Cambridge University Press:  11 January 2016

Christof Geiss
Affiliation:
Instituto de Matemáticas, UNAM, Ciudad Universitaria, 04510 Mexico D.F., Mexico, [email protected]
Bernard Leclerc
Affiliation:
LMNO, Université de Caen, 14032 Caen cedex, France, [email protected]
Jan Schröer
Affiliation:
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, England, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a geometric construction of the Verma modules of a symmetric Kac-Moody Lie algebra g in terms of constructible functions on the varieties of nilpotent finite-dimensional modules of the corresponding preprojective algebra Λ.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2006

References

[Bo] Bongartz, K., Algebras and quadratic forms, J. London Math. Soc, 28 (1983), 461469.Google Scholar
[BK] Butler, M. C. R. and King, A. D., Minimal resolutions of algebras, J. Algebra, 212 (1999), 323362.Google Scholar
[CB] Crawley-Boevey, W., On the exceptional fibres of Kleinian singularities, Amer. J. Math., 122 (2000), 10271037.CrossRefGoogle Scholar
[GLS] Geiss, C., Leclerc, B. and Schröer, J., Semicanonical bases and preprojective algebras, Ann. Scient. Ec. Norm. Sup., 38 (2005), 193253.CrossRefGoogle Scholar
[GP] Gelfand, I. M. and Ponomarev, V. A., Model algebras and representations of graphs, Funct. Anal. Appl., 13 (1980), 157166.Google Scholar
[Lu1] Lusztig, G., Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc, 4 (1991), 365421.Google Scholar
[Lu2] Lusztig, G., Semicanonical bases arising from enveloping algebras, Adv. Math., 151 (2000), 129139.Google Scholar
[Lu3] Lusztig, G., Remarks on quiver varieties, Duke Math. J., 105 (2000), 239265.CrossRefGoogle Scholar
[Lu4] Lusztig, G., Constructible functions on varieties attached to quivers, Studies in memory of Issai Schur, Progress in Mathematics 210, Birkhäuser (2003), pp. 177223.Google Scholar
[Na] Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J., 76 (1994), 365416.CrossRefGoogle Scholar
[Ri] Ringel, C. M., The preprojective algebra of a quiver, Algebras and modules II (Geiranger, 1966), CMS Conf. Proc. 24, AMS (1998), pp. 467480.Google Scholar