Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T23:12:07.806Z Has data issue: false hasContentIssue false

Vector Semi-Fredholm Toeplitz Operators and Mean Winding Numbers

Published online by Cambridge University Press:  11 January 2016

Dmitry Yakubovich*
Affiliation:
Departamento de MatemáticasUniversidad Autónoma de Madrid and Instituto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Cantoblanco 28049, Madrid [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a continuous nonvanishing complex-valued function g on the real line, several notions of a mean winding number are introduced. We give necessary conditions for a Toeplitz operator with matrix-valued symbol G to be semi-Fredholm in terms of mean winding numbers of det G. The matrix function G is assumed to be continuous on the real line, and no other apriori assumptions on it are made.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2009

References

[1] Ablowitz, M. J. and Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991.Google Scholar
[2] Abrahamse, M. B., The spectrum of a Toeplitz operator with a multiplicatively periodic symbol, J. Functional Anal., 31 (1979), no. 2, 224233.CrossRefGoogle Scholar
[3] Antipov, Y. A., Popov, G. Ya. and Yatsko, S. I., Solution of the problem of stress concentration around intersecting defects by using the Riemann problem with an infinite index, J. Appl. Math. Mech. (PMM), 51 (1987), 357365.Google Scholar
[4] Baranov, A. D. and Havin, V. P., Admissible majorants for model subspaces, and argumentes of inner functions, Funct. Anal. and its Applications, 40 (2006), no. 4, 321.Google Scholar
[5] Bastos, M. A., Fernandes, C. A. and Karlovich, Yu. I., C-algebras of integral operators with piecewise slowly oscillating coefficients and shifts acting freely, Integral Eq. Oper. Theory, 55 (2006), no. 1, 1967.CrossRefGoogle Scholar
[6] Bastos, M. A., Yu. I. Karlovich and B. Silbermann, Toeplitz operators with symbols generated by slowly oscillating and semi-almost periodic matrix functions, Proc. London Math. Soc. (3), 89 (2004), 697737.Google Scholar
[7] Böttcher, A., rudsky, S. and Spitkovsky, I. M., Toeplitz operators with frequency modulated semi-almost periodic symbols, J. Fourier Anal. Appl., 7 (2001), no. 5, 523535.CrossRefGoogle Scholar
[8] Begehr, H., Complex analytic methods for partial differential equations. An introductory text, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.Google Scholar
[9] Begehr, H. and Dai, D.-Q., On continuous solutions of a generalized Cauchy-Riemann system with more than one singularity, J. Differential Equations, 196 (2004), no. 1, 6790.Google Scholar
[10] Böttcher, A., Grudsky, S. and Spitkovsky, I. M., Block Toeplitz operators with frequency-modulated semi-almost periodic symbols, International Journal of Mathematics and Mathematical Sciences, 2003 (2003), no. 34, 21572176.Google Scholar
[11] Böttcher, A. and Grudsky, S., Toeplitz operators with discontinuous symbols: phenomena beyond piecewise continuity, Singular integral operators and related topics (Tel Aviv, 1995), Oper. Theory: Adv. Appl., 90, Birkh¨auser, Basel, 1996, pp. 55118.Google Scholar
[12] Böttcher, A., Grudsky, S. and Ram½rez de Arellano, E., Algebras of Toeplitz operators with oscillating symbols, Rev. Mat. Iberoamericana, 20 (2004), 647671.Google Scholar
[13] Böttcher, A., Karlovich, Yu. I. and Spitkovsky, I. M., Convolution operators and factorization of almost periodic matrix functions, Operator Theory: Adv. and Appl., 131, Birkh¨auser, Basel, 2002.Google Scholar
[14] Böttcher, A., Karlovich, Yu. and Spitkovsky, I., The C-algebra of singular integral operators with semi-almost periodic coefficients, J. Funct. Anal., 204 (2003), no. 2, 445484.CrossRefGoogle Scholar
[15] Böttcher, A. and Silbermann, B., Analysis of Toeplitz operators, Springer, Berlin etc., Second edition, 2006.Google Scholar
[16] Callier, F. M. and Winkin, J. J., The spectral factorization problem for multivariable distributed parameter systems, Integral Equations Operator Theory, 34 (1999), no. 3, 270292.Google Scholar
[17] Clancey, K. and Gohberg, I., Factorization of matrix functions and singular integral operators, Birkh¨auser, Basel, 1981.Google Scholar
[18] Duren, P. L., Theory of Hp spaces, Acad. Press, N.Y., 1970.Google Scholar
[19] Dybin, V. and Grudsky, S. M., Introduction to the theory of Toeplitz operators with infinite index, Operator Theory: Adv. and Appl., 137, Birkh¨auser, Basel, 2002.Google Scholar
[20] Garc½a-Cuerva, J. and Rubio de Francia, J. L., Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116, Elsevier Science Publishers B.V., North-Holland-Amsterdam, etc., 1985.Google Scholar
[21] Gohberg, I. and Krupnik, N., One-dimensional linear singular integral equations, Vol. I, Introduction; Vol. II, General theory and applications, Operator Theory: Adv. and Appl., 53, 54, Birkh¨auser, Basel, 1992.Google Scholar
[22] Govorov, N. V., Riemann’s boundary problem with infinite index, Operator theory: Adv. and Appl., 67, Birkh¨auser, Basel, 1994.Google Scholar
[23] Hartmann, A., Sarason, D. and Seip, K., Surjective Toeplitz operators, Acta Sci. Math. (Szeged), 70 (2004), no. 34, 609621.Google Scholar
[24] Havin, V. and Mashreghi, J., Admissible majorants for model subspaces of H2. I. Slow winding of the generating inner function; II. Fast winding of the generating inner function, Canad. J. Math., 55 (2003), no. 6, 12641301; Canad. J. Math., 55 (2003), no. 6, 12311263.Google Scholar
[25] Karlovich, Yu. and Spitkovsky, I., (Semi)-Fredholmness of convolution operators on the spaces of Bessel potentials, Toeplitz operators and related topics (Santa Cruz, CA, 1992), Oper. Theory Adv. Appl., 71, Birkh¨auser, Basel, 1994, pp. 122152.Google Scholar
[26] Litvinchuk, G. S. and Spitkovskii, I. M., Factorization of measurable matrix functions, Operator theory: Advances and Applications, vol. 25, Birkh¨auser, Basel, 1987.Google Scholar
[27] Makarov, N. and Poltoratski, A., Beurling-Malliavin theory for Toeplitz kernels, preprint.Google Scholar
[28] Mikhlin, S. G. and Prössdorf, S., Singular integral operators, Springer, Berlin etc., 1986.Google Scholar
[29] Monakhov, V. N. and Semenko, E. V., Boundary value problems and pseudodifferential operators on Riemann surfaces (Russian), Moscow, Fizmatlit, 2003.Google Scholar
[30] Nakazi, T., The spectra of Toeplitz operators with unimodular symbols, Proc. Edinburgh Math. Soc. (2), 41 (1998), no. 1, 133139.Google Scholar
[31] Nikolski, N. K., Treatise on the shift operator, Springer, Berlin etc. 1986, Appendix 4, Essays on the spectral theory of Hankel and Toeplitz operators.Google Scholar
[32] Nikolski, N. K., Operators, functions, and systems: an easy reading, Vol. 1, Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, 92, Amer. Math. Soc., Providence, R.I., 2002.Google Scholar
[33] Ostrovskiĭ, I. V., The homogeneous Riemann boundary value problem with an infinite index on a curvilinear contour. II (Russian), Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., 57 (1992), 317 (1993); translation in J. Math. Sci., 77 (1995), no. 1, 29172928.Google Scholar
[34] Pousson, H. R., Systems of Toeplitz operators on H2, Proc. Amer. Math. Soc., 19 (1968), 603608.Google Scholar
[35] Power, S. C., Fredholm Toeplitz operators and slow oscillation, Canad. J. Math., 32 (1980), no. 5, 10581071.Google Scholar
[36] Rabindranathan, M., On the inversion of Toeplitz operators, J. Math. Mech., 19 (1969), 195206.Google Scholar
[37] Sarason, D., Toeplitz operators with piecewise quasicontinuous symbols, Indiana Univ. Math. J., 26 (1977), no. 5, 817838.CrossRefGoogle Scholar
[38] Sarason, D., Toeplitz operators with semi-almost periodic kernels, Duke Math. J., 44 (1977), 357364.Google Scholar
[39] Sarason, D., The Banach algebra of slowly oscillating functions, Houston J. Math., 33 (2007), 1161-1182.Google Scholar
[40] Shargorodsky, E. and Toland, J. F., Riemann-Hilbert theory for problems with vanishing coefficients that arise in nonlinear hydrodynamics, J. Funct. Anal, 197 (2003), no. 1, 283300.CrossRefGoogle Scholar
[41] Spitkovsky, I. M., Factorization of measurable matrix-functions in classes Lv,p with power weight, Izv. Vyssh. Uchebn. Zaved. Mat. (5) (1988), 6270 (in Russian); transl. in Soviet Math. (Iz. VUZ), 32 (1988), no. 5, 7888.Google Scholar