No CrossRef data available.
Published online by Cambridge University Press: 22 January 2016
In the previous papers [6], [7], we show that the set of an algebraic homogeneous space G/P fixed under the action of a maximal torus T can be canonically identified with the coset W1 = W/W1 of Weyl group W. We find a T invariant Zariski open set near each element w ∊ W1 and introduce a very nice local coordinate system such that we can express the maximal torus action explicitly. As a result, we become able to apply the study of J. B. Carrell and D. Lieberman [2], [3] to the space G/P and investigate the numerical properties of its characteristic classes and cycles.