Published online by Cambridge University Press: 22 January 2016
Let ϕ: M → RN be an isometric imbedding of a compact, connected surface M into a Euclidean space RN. ψ is said to be umbilical at a point p of M if all principal curvatures are equal for any normal direction. It is known that if the Euler characteristic of M is not zero and N = 3, then ψ is umbilical at some point on M. In this paper we study umbilical points of surfaces of higher codimension. In Theorem 1, we show that if M is homeomorphic to either a 2-sphere or a 2-dimensional projective space and if the normal connection of ψ is flat, then ψ is umbilical at some point on M. In Section 2, we consider a surface M whose Gaussian curvature is positive constant. If the surface is compact and N = 3, Liebmann’s theorem says that it must be a round sphere. However, if N ≥ 4, the surface is not rigid: For any isometric imbedding Φ of R3 into R4 Φ(S2(r)) is a compact surface of constant positive Gaussian curvature 1/r2. We use Theorem 1 to show that if the normal connection of ψ is flat and the length of the mean curvature vector of ψ is constant, then ψ(M) is a round sphere in some R3 ⊂ RN. When N = 4, our conditions on ψ is satisfied if the mean curvature vector is parallel with respect to the normal connection. Our theorem fails if the surface is not compact, while the corresponding theorem holds locally for a surface with parallel mean curvature vector (See Remark (i) in Section 3).