Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T01:42:52.605Z Has data issue: false hasContentIssue false

Twisted Maaß–Koecher series and spinor zeta functions

Published online by Cambridge University Press:  22 January 2016

Stefan Breulmann
Affiliation:
Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany, [email protected]
Winfried Kohnen
Affiliation:
Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a Siegel-Hecke eigenform of integral weight k and genus 2 is uniquely determined by its Fourier coefficients indexed by nT where T runs over all half-integral positive definite primitive matrices of size 2 and n over all squarefree positive integers. The proof uses analytic arguments involving Koecher-Maaß series and spinor zeta functions.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1999

References

[An] Andrianov, A.N., Euler products corresponding to Siegel modular forms of genus 2, Russ. Math. Surv., 29:3 (1974), 45116, from: Uspekhi Mat. Nauk. 29:3 (1974), 43110.CrossRefGoogle Scholar
[Im] Imai, K., Generalization of Hecke’s correspondence to Siegel modular forms, Amer. J. Math., 102, No. 5 (1980), 903936.CrossRefGoogle Scholar
[Ki] Kitaoka, Y., Representations of quadratic forms and their application to Selberg’s zeta function, Nagoya Math. J., 63 (1976), 153162.CrossRefGoogle Scholar
[Ko] Kohnen, W., On Hecke eigenforms of half-integral weight, Math. Ann., 293 (1992), 427431.CrossRefGoogle Scholar
[Ku] Kubota, T., Elementary Theory of Eisenstein series, Halsted Press, 1973.Google Scholar
[Za] Zagier, D.B., Zetafunktionen und quadratische Körper, Springer-Verlag, Berlin, Heidelberg, New York, 1981.CrossRefGoogle Scholar