Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T00:44:03.283Z Has data issue: false hasContentIssue false

Torsion points on elliptic curves defined over quadratic fields

Published online by Cambridge University Press:  22 January 2016

M. A. Kenku
Affiliation:
Department of Mathematics, Faculty of Science, University of Lagos, Lagos, Nigeria
F. Momose
Affiliation:
Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let k be a quadratic field and E an elliptic curve defined over k. The authors [8, 12, 13] [23] discussed the k-rational points on E of prime power order. For a prime number p, let n = n(k, p) be the least non negative integer such that

for all elliptic curves E defined over a quadratic field k ([15]).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1988

References

[1] Authaud, N., On Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication, Compositio Math., 37, 2 (1978), 209232.Google Scholar
[1] Atkin, A. O. L and Lehner, J., Hecke operators on A(m), Math. Ann., 185 (1972), 134160.CrossRefGoogle Scholar
[1] Coates, J. and Wiles, A., On the conjecture of Birch and Swinnerton Dyer, Invent. Math., 39 (1977), 223251.CrossRefGoogle Scholar
[1] Deligne, P. and Rapoport, M., Les schémas de modules de courbes elliptique, Proceedings of the International Summer School on Modular functions of one variable, vol. II, Lecture Notes in Math., 349, Springer-Verlag, Berlin-Heidelberg-New York (1973).Google Scholar
[1] Grothendieck, A., Fondements de la géométrie algébrique, Sèm. Bourbaki, 19571962.Google Scholar
[1] Hasse, H., Über die Klassenzahl Abelscher ZahlKörper (1952), Akademie-Verlag GmbH., Berlin.CrossRefGoogle Scholar
[1] Ishii, N. and Momose, F., Hyperelliptic modular curves, to appear.Google Scholar
[1] Kenku, M. A., Certain torsion points on elliptic curves defined over quadratic fields, J. London Math. Soc. (2) 19 (1979), 233240.CrossRefGoogle Scholar
[1] Kenku, M. A., The modular curve X 0(39) and rational isogeny, Math. Proc. Cambridge Philos. Soc, 85 (1979), 2123.CrossRefGoogle Scholar
[10] Kenku, M. A., The modular curves X0(65) and X 0(91) and rational isogeny, Math. Proc. Cambridge Philos. Soc, 87 (1980), 1520.CrossRefGoogle Scholar
[11] Kenku, M. A., The modular curve X0(169) and rational isogeny, J. London Math. Soc. (2), 22 (1981), 239244.Google Scholar
[12] Kenku, M. A., On the modular curves X 0(125), X 1(25) and X 1(49), J. London Math. Soc. (2), 23 (1981), 415427.CrossRefGoogle Scholar
[13] Kenku, M. A., Rational torsion points on elliptic curves defined over quadratic fields, to appear.Google Scholar
[14] Kubert, D., Universal bounds on the torsion points of elliptic curves, Proc London Math. Soc. (3), 33 (1976), 193237.CrossRefGoogle Scholar
[15] Manin, Yu. I., The p-torsion of elliptic curves is uniformally bounded, Math. USSR-Izvestija, 3 (1969), 433438.CrossRefGoogle Scholar
[16] Manin, Yu. I., Parabolic points and zeta-functions of modular curves, Math. USSR-Izvestija, 6 (1972), 1964.CrossRefGoogle Scholar
[17] Mazur, B., Rational points on modular curves, Proceedings of Conference on Modular Functions held in Bonn, Lecture Notes in Math. 601, Springer-Verlag, Berlin-Heiderberg-New York (1977).Google Scholar
[18] Mazur, B., Rational isogenies of prime degree, Invent. Math., 44 (1978), 129162.CrossRefGoogle Scholar
[19] Mazur, B. and Tate, J., Points of order 13 on elliptic curves, Invent. Math., 22 (1973), 4149.CrossRefGoogle Scholar
[20] Mestre, J. F., Points rationnels de la courbe modulaire X 0(169), Ann. Inst. Fourier, 30, 2 (1980), 1727.CrossRefGoogle Scholar
[21] Milne, J. S., On the arithmetic of abelian varieties, Invent. Math., 17 (1972), 177190.CrossRefGoogle Scholar
[22] Momose, F., Rational points on the modular curves X split(p), Compositio Math., 52 (1984), 115137.Google Scholar
[23] Momose, F., p-torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., 96 (1984), 139165.CrossRefGoogle Scholar
[24] Ogg, A., Rational points on certain elliptic modular curves, Proc. Symposia in Pure Math. XXIX, AMS, (1973) 221231.CrossRefGoogle Scholar
[25] Ogg, A., Hyperelliptic modular curves, Bull. Soc. Math. France, 102 (1974), 449462.CrossRefGoogle Scholar
[26] Ogg, A., Diophantine equations and modular forms, Bull. AMS, 81 (1975), 1427.CrossRefGoogle Scholar
[27] Oort, F. and Tate, J., Group schemes of prime order, Ann. Scient. Ec. Norm. Sup. serie 4, 3 (1970), 121.Google Scholar
[28] Raynaud, M., Schémas en groupes de type (p, …, p), Bull. Soc. Math. France, 102 (1974), 241280.CrossRefGoogle Scholar
[29] Rubin, K., Congruences for special values of L-functions of elliptic curves with complex multiplication, Invent. Math., 71 (1983), 339364.CrossRefGoogle Scholar
[30] Serre, J. P., Propriétés galoissiennes des points d’ordre fini des courbes elliptiques, Invent. Math., 15 (1972), 259331.CrossRefGoogle Scholar
[31] Serre, J. P., p-torsion des courbes elliptiques (d’après Y. Manin), Sèm. Boubaki 1969/70, 281–294, Lecture Notes in Math. 180, Springer-Verlag, Berlin-Heidelberg-New York (1971).Google Scholar
[32] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan 11, Iwanami Shoten, Tokyo-Princeton Univ. Press, Princeton, N.J. Google Scholar
[33] Shimura, G., On elliptic curves with complex multiplication as factors of the jacobians of modular function fields, Nagoya Math. J., 43 (1971), 199208.CrossRefGoogle Scholar
[34] Weil, A., Adèles and algebraic groups, Lecture Notes, Inst. for Advanced Study, Princeton, N.J.Google Scholar
[35] Yu, J., A cuspidal class number formula for the modular curves Xi(N), Math. Ann., 252 (1980), 197216.CrossRefGoogle Scholar
[36] Modular functions of one variable IV (ed. by Birch, B. J. and Kuyk, W.), Lecture Notes in Math., 476, Springer-Verlag, Berlin-Heidelberg-New York (1975).Google Scholar