Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Kudla, Stephen S.
1979.
On certain arithmetic automorphic forms forSU (1,q).
Inventiones Mathematicae,
Vol. 52,
Issue. 1,
p.
1.
Yoshida, Hiroyuki
1980.
Siegel's modular forms and the arithmetic of quadratic forms.
Inventiones Mathematicae,
Vol. 60,
Issue. 3,
p.
193.
Rallis, S.
and
Schiffmann, G.
1981.
On a relation between ̃𝑆𝐿₂ cusp forms and cusp forms on tube domains associated to orthogonal groups.
Transactions of the American Mathematical Society,
Vol. 263,
Issue. 1,
p.
1.
Friedberg, Solomon
1983.
On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level.
Nagoya Mathematical Journal,
Vol. 92,
Issue. ,
p.
1.
Panchishkin, A. A.
1983.
Modular forms.
Journal of Soviet Mathematics,
Vol. 23,
Issue. 6,
p.
2707.
Friedberg, Solomon
2003.
Number Theory and Modular Forms.
Vol. 10,
Issue. ,
p.
165.
Ichino, Atsushi
2005.
Pullbacks of Saito-Kurokawa lifts.
Inventiones mathematicae,
Vol. 162,
Issue. 3,
p.
551.
Narkiewicz, Władysław
2012.
Rational Number Theory in the 20th Century.
p.
307.
Terras, Audrey
2013.
Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane.
p.
1.
Terras, Audrey
2013.
Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane.
p.
149.
Terras, Audrey
2013.
Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane.
p.
107.
Terras, Audrey
2016.
Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations.
p.
337.
Kumar, Balesh
and
Manickam, Murugesan
2019.
On Doi–Naganuma and Shimura liftings.
The Ramanujan Journal,
Vol. 48,
Issue. 2,
p.
279.
Schwagenscheidt, Markus
and
Williams, Brandon
2019.
Twisted component sums of vector-valued modular forms.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
Vol. 89,
Issue. 2,
p.
151.
Pollack, Aaron
2021.
A quaternionic Saito–Kurokawa lift and cusp
forms on G2.
Algebra & Number Theory,
Vol. 15,
Issue. 5,
p.
1213.