Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T22:56:41.275Z Has data issue: false hasContentIssue false

Ternary quadratic forms and Shimura’s correspondence

Published online by Cambridge University Press:  22 January 2016

Paul Ponomarev*
Affiliation:
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In his paper [11] Shimura defined a correspondence between modular forms of half integral weight and modular forms of integral weight. To each pair (t, f(z)), consisting of a square-free integer t ≥ 1 and a cusp form of weight k/2 (k odd, ≥ 3), level N (divisible by 4) and character ϰ, he associated a certain function f(t)(z) (Ft(z) in Shimura’s notation).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1981

References

[ 1 ] Eichler, M., Quadratische Formen und orthogonale Gruppen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1952.Google Scholar
[ 2 ] Eichler, M., Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion, Archiv der Math. 5 (1954), 355366.CrossRefGoogle Scholar
[ 3 ] Eichler, M., Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955), 127151.Google Scholar
[ 4 ] Eichler, M., Über die Darstellbarkeit von Modulformen durch Thetareihen, J. Reine Angew. Math. 195 (1955), 156171.Google Scholar
[ 5 ] Kneser, M., Witts Satz für quadratische Formen über lokalen Ringen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1972, 195203.Google Scholar
[ 6 ] Niwa, S., Modular forms of half integral weight and the integral of certain theta-functions, Nagoya Math. J. 56 (1974), 147161.CrossRefGoogle Scholar
[ 7 ] Ponomarev, P., Class numbers of definite quaternary forms with square discriminant, J. No. Theory 6 (1974), 291317.Google Scholar
[ 8] Ponomarev, P., Arithmetic of quaternary quadratic forms, Acta Arith. 29 (1976), 148.Google Scholar
[ 9 ] Ponomarev, P., Ternary quadratic forms and an explicit quaternary correspondence, Proceedings of the Conference on Quadratic Forms, Queen’s Papers in Pure and Applied Mathematics, No. 46 (1977), 582594.Google Scholar
[10] Rallis, S., The Eichler commutation relation and the continuous spectrum of the Weil representation, Proceedings of the Conference on Non Commutative Harmonic Analysis, Marseille-Luminy, June 1978, Springer-Verlag (to appear).Google Scholar
[11] Shimura, G., On modular forms of half integral weight, Ann. of Math. 97 (1973), 440481.Google Scholar
[12] Wada, H., A table of Hecke operators II, Proc. Japan Acad. 49 (1973), 380384.Google Scholar
[13] Watson, G. L., Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3) 12 (1962), 577587.Google Scholar
[14] Yamauchi, M., On the traces of Hecke operators for a normalizer of Γ0(N), J. Math. Kyoto Univ. 13 (1973), 403411.Google Scholar