Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:46:24.630Z Has data issue: false hasContentIssue false

Surfaces associées au plongement canonique des courbes

Published online by Cambridge University Press:  22 January 2016

Jean D’Almeida*
Affiliation:
U.F.R. de Mathématiques Pures et Appliquées-Bât. M2 U.R.A. au C.N.R.S.D 0751, Université des Sciences et Technologies de Lille, 59655-VILLENEUVE D’ASCQ CEDEX (FRANCE)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Soit C une courbe canonique de genre g ≥ 4. Le théorème de Enriques-Babbage [ACGH] affirme que l’idéal de C est engendré par (g − 2) (g − 3)/2 hypersurfaces quadriques sauf si C est trigonale ou isomorphe à une quintique plane. Si C est trigonale, elle est tracée sur une surface réglée rationnelle normale dont les génératrices découpent la série trigonale. Si C est isomorphe à une quintique plane lisse, elle est tracée sur une surface de Veronése.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1995

References

Bibliographie

[ACGH] Arbarello, E., Corbalba, M., Griffiths, P., Harris, J., Geometry of Algebraic curves I, Springer-Verlag, 1985.Google Scholar
[AH] d’Almeida, J., Hirschowitz, A., Quelques plongements projectifs non spéciaux de surfaces rationnelles., Math. Zeit, 211 (1992), 479483.Google Scholar
[AS] Arbarello, E., Sernesi, E., The equation of a plane curve, Duke Math. J., 46 (1979), 469485.Google Scholar
[GH] Griffiths, P., Harris, J., Principles of Algebraic geometry, Wiley Interscience, 1978.Google Scholar
[H1] Hartshorne, R., Algebraic Geometry, Springer-Verlag, 1977.Google Scholar
[H2] Harris, J., On the Severi Problem, Invent. Math., 84 (1986), 445461.Google Scholar
[HM] Harris, J., Mumford, D., On the Kodaira dimension of the moduli space of curves, Invent. Math., 67 (1982), 2386.Google Scholar
[MM] Mori, S., Mukai, S., The uniruledness of the moduli space of curves of genus ≤ 11 LNM, 1016 (1983), 334353.Google Scholar
[Muk] Mukai, S., Curves, K3 surfaces and Fano threefolds of genus ≤ 10, in ‘Algebraic Geometry and Commutative Algebra in honor of M Nagata’, (1988), 357377.Google Scholar
[R] Reider, I., Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. Math., 127 (1988), 309316.Google Scholar
[S] Severi, F., Vorlesungen über Algebraische Geometric, Anhang F. Leipzig Teubner 1921.Google Scholar
[SB] Sheperd-Barron, N.I., Invariant theory for S5 and the rationality of M6 , Composito Math., 70 (1989), 1325 Google Scholar