Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T10:47:48.346Z Has data issue: false hasContentIssue false

Sur les fonctions périodiques de plusieurs variables

Published online by Cambridge University Press:  22 January 2016

Yukitaka Abe*
Affiliation:
Département de Mathématiques, Université de Toyama, Gofuku, Toyama 930, Japon
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Les fonctions périodiques d’une seule variable ont été étudiées depuis longtemps. On sait que toute fonction méromorphe de n variables 2n fois périodiques peut s’écrire comme quotient de deux fonctions thêta. Ceci est a l’origine de l’essor des fonctions thêta. Au contraire, l’étude des fonctions périodiques de n variables r fois périodiques (r < 2n) a pris du retard. Il nous semble que P. Cousin ([4] et [5]) a étudié ces fonctions pour la première fois.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1991

References

Bibliographie

[1] Abe, Y., Holomorphic sections of line bundles over (H, C)-groups, Manuscripta Math., 60 (1988), 379385.Google Scholar
[2] Abe, Y., On toroidal groups, J. Math. Soc. Japan, 41 (1989), 699708.Google Scholar
[3] Abe, Y., Homomorphisms of toroidal groups, Math. Rep. Toyama Univ., 12 (1989), 65112.Google Scholar
[4] Cousin, P., Sur les fonctions périodiques, Ann. Sci. École Norm. Sup., 19 (1902), 961.Google Scholar
[5] Cousin, P., Sur les fonctions triplement périodiques de deux variables, Acta Math., 33 (1910), 105232.CrossRefGoogle Scholar
[6] Gherardelli, F. and Andreotti, A., Some remarks on quasi-abelian manifolds, Global analysis and its applications, Vol. II. Intern. Atomic Energy Agency, Vienna, 1974, 203206.Google Scholar
[7] Huckleberry, A. T. and Margulis, G. A., Invariant analytic hypersurfaces, Invent. Math., 71 (1983), 235240.CrossRefGoogle Scholar
[8] Kazama, H., On pseudo-convexity of complex abelian Lie groups, J. Math. Soc. Japan., 25 (1973), 329333.Google Scholar
[9] Kazama, H., Approximation theorem and application to Nakano’s vanishing theorem for weakly 1-complete manifolds, Mem. Fac. Sci. Kyushu Univ. Ser. A., 27 (1973), 221240.Google Scholar
[10] Kazama, H., Cohomology of (H, C)-groups. Publ. Res. Inst. Math. Sci., 20 (1984), 297317.Google Scholar
[11] Kodaira, K., On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math., 60 (1954), 2848.Google Scholar
[12] Kopfermann, K., Maximale Untergruppen abelscher komplexer Liescher Gruppen. Schr. Math. Inst. Univ. Münster, 29 (1964).Google Scholar
[13] Morimoto, A., Non-compact complex Lie groups without non-constant holomorphic functions, Proc. of Conf. on Complex Analysis (Minneapolis 1964), Springer-Verlag, 1965, 256272.Google Scholar
[14] Morimoto, A., On the classification of noncompact abelian Lie groups. Trans. Amer. Math. Soc., 123 (1966), 200228.Google Scholar
[15] Nakano, S., Vanishing theorems for weakly 1-complete manifolds, II. Publ. Res. Inst. Math. Sci., 10 (1974), 101110.CrossRefGoogle Scholar
[16] Pothering, G., Meromorphic function fields of non-compact Cn/Γ , Thesis, Univ. of Notre Dame, 1977.Google Scholar
[17] Vogt, Ch., Line bundles on toroidal groups, J. Reine Angew. Math., 335 (1982), 197215.Google Scholar
[18] Vogt, Ch., Two remarks concerning toroidal groups, Manuscripta Math., 41 (1983), 217232.Google Scholar