Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T15:29:11.361Z Has data issue: false hasContentIssue false

Sur le semi-groupe de l’operateur inverse de Δ

Published online by Cambridge University Press:  22 January 2016

Yoshifusa Ito*
Affiliation:
Université de Nagoya, Département de Physiologie
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Soient N le noyau newtonien sur l’espace euclidien Rn à dimension n ≧ 3 et E l’espace de Banach formé par des fonctions finies et continues définies dans Rn s’annulant à l’infini et normé usuellement. Définissons l’opérateur de convolution K par Kf = –N*f. Dans cette note nous traitrons l’opérateur K dans E.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1976

References

Bibliographie

[1] Erdélyi, A.; Table of integral transforms, McGraw-Hill book company, INC. New York, 1954.Google Scholar
[3] Watson, G. N.; A treatise on the theory of Bessel functions, Cambridge, at the university press, 1966.Google Scholar
[4] Békésy, G.; Neural funneling along the skin and between the inner and outer hair cells of the cochlea, J. Accoust. Soc. Am., 13 (1959), 12361249.CrossRefGoogle Scholar
[5] Hartline, H. K. and Ratliff, F.; Inhibitory interaction of receptor units in the eye of Limulus, J. Gen. Physiol., 40 (1957), 357376.CrossRefGoogle Scholar
[6] Ratliff, F.; Mach Bands : Quantitative Studies on Neural Networks in the Retina, Holden-Day, San Francisco, 1965.Google Scholar