Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T23:58:50.406Z Has data issue: false hasContentIssue false

Super-Łukasiewicz propositional logics

Published online by Cambridge University Press:  22 January 2016

Yuichi Komori*
Affiliation:
Department of Mathematics Faculty of Science, Shizuoka University, Ohya Shizuoka 422, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [8] (1920), Łukasiewicz introduced a 3-valued propositional calculus with one designated truth-value and later in [9], Łukasiewicz and Tarski generalized it to an m-valued propositional calculus (where m is a natural number or ) with one designated truth-value.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1981

References

[ 1 ] Chang, C.C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88 (1958), 467490.Google Scholar
[ 2 ] Chang, C.C., A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc, 93 (1959), 7480.Google Scholar
[ 3 ] Hosoi, T., On intermediate logics II, J. Fac. Sci., Univ. Tokyo, Sec. I, 16 (1969), 112.Google Scholar
[ 4 ] Komori, Y., The separation theorem of the Ko-valued Łukasiewicz propositional logic, Rep. Fac. Sci., Shizuoka Univ., 12 (1978), 15.Google Scholar
[ 5 ] Komori, Y., Super-Łukasiewicz implicational logics, Nagoya Math. J., 72 (1978), 127133.CrossRefGoogle Scholar
[ 6 ] Komori, Y., Completeness of two theories on ordered abelian groups and embedding relations, Nagoya Math. J., 77 (1980), 3339.Google Scholar
[ 7 ] Krzystek, P.S. and Zachorowski, S., Łukasiewicz logics have not the interpolation property, Rep. Math. Logic, 9 (1977), 3940.Google Scholar
[ 8 ] Łukasiewicz, J., O logice trójwartościowej, Ruch filozoficzny, 5 (1920), 169171.Google Scholar
[ 9 ] Łukasiewicz, J. and Tarski, A., Untersuchungen über den Aussagenkalkül, Comptesrendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, 23 (1930), 3050.Google Scholar
[10] McNaughton, R., A theorem about infinite-valued sentential logic, J.S.L., 16 (1951), 113.Google Scholar
[11] Rose, A., The degree of completeness of the Ko-valued Łukasiewicz propositional calculus, J. London Math. Soc, 28 (1953), 176184.Google Scholar
[12] Rose, A. and Rosser, J.B., Fragments of many-valued statement calculi, Trans. Amer. Math. Soc, 87 (1958), 153.CrossRefGoogle Scholar
[13] Rosser, J.B. and Turquette, A.R., Axiom schemes for m-valued propositional calculi, J.S.L., 10 (1945), 6182.Google Scholar
[14] Rosser, J.B. and Turquette, A.R., Many-valued Logics, North-Holland, Amsterdam, 1958.Google Scholar
[15] Tarski, A., Logic, semantic, metamathematics, Oxford Univ. Press, 1956.Google Scholar
[16] Wajsberg, M., Aksjomatyzacja trójwartościowego rachunku zdań, Comptes rendue des séauces de la Société des Sciences et des Lettres de Varsovie, Classe III, 24 (1931), 259262.Google Scholar
[17] Wajsberg, M., Beitrage zum Metaaussagenkalkül I, Monatshefte fur Mathematik und Physik, 42 (1935), 221242.Google Scholar