Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T13:30:40.218Z Has data issue: false hasContentIssue false

Strongly Regular Extensions of Rings

Published online by Cambridge University Press:  22 January 2016

Carl Faith*
Affiliation:
Mathematisches Institut, Heidelberg, Germany and Institute for Advanced Study, Princeton, N. J.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As defined by Arens and Kaplansky [2] a ring A is strongly regular (s.r.) in case to each a∊ A there corresponds x = xaA depending on a such that a2x = a. In the present article a ring A is defined to be a s.r. extension of a subring B in case each a>∊A satisfies a2x-aB with x = xaA. S.r. rings are, then, s.r. extensions of each subring. A ring A which is a s.r. extension of the center has been called a ξ-ring (see Utumi [13], Drazin [3], Martindale [11], and their bibliographies).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1962

References

[1] Amitsur, Shimshon A., Invariant submodules of simple rings, Proc. Amer. Math. Soc. vol. 7 (1956), 987989.CrossRefGoogle Scholar
[2] Arens, Richard and Kaplansky, Irving, Topological representation of algebras, Trans, Amer. Math. Soc. vol. 63 (1948), 457481.CrossRefGoogle Scholar
[3] Drazin, Michael P., Rings with nil commutator ideals, Rend. Circ. Math. Palermo, vol. 6 (1957) 5164.CrossRefGoogle Scholar
[4] Faith, Carl, Algebraic division ring extensions, Proc. Amer. Math. Soc. vol.11 (1960), 4353.CrossRefGoogle Scholar
[5] Faith, Carl, Radical extensions of rings, Proc. Amer. Math. Soc. vol. 12 (1961), 274283.CrossRefGoogle Scholar
[6] Faith, Carl, A structure theory for semialgebraic extensions of division algebras, J. für die reine und angewandte Math. (Crelle’s Journal) vol. 209 (1962), 144162.CrossRefGoogle Scholar
[7] Faith, Carl, Submodules of rings, Proc. Amer. Math. Soc. vol. 10 (1959), 596606.CrossRefGoogle Scholar
[8] Jacobson, Nathan, Theory of Rings, Amer. Math. Soc. Surveys, vol. 2, Ann Arbor, 1948.Google Scholar
[9] Jacobson, Nathan, Structure of Rings, Amer. Math. Soc. Colloquium Publications, vol. 37, Providence, 1956.CrossRefGoogle Scholar
[10] Kasch, Friedrich, Invariante Untermoduln des Endomomorphismenrings eines Vektorraums, Arch, der Math., vol. 4 (153), 182190.CrossRefGoogle Scholar
[11] Martindale, Wallace S. III, The structure of a special class of rings, Proc. Amer. Math. Soc. vol. 9 (1958), 714721.CrossRefGoogle Scholar
[12] Nakayama, Tadasi, A remark on the commutativity of algebraic rings, Nagoya Math. J., vol. 12 (1959), 3944.CrossRefGoogle Scholar
[13] Utumi, Yuzo, On ξ-rings, Proc. Japan Acad. vol. 33 (1957) 6366.Google Scholar
[14] Neumann, John von, On regular rings, Proc. Nat. Acad. Sci. (U.S.A.) vol. 22 (1936), 707713.CrossRefGoogle Scholar