Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T16:27:29.074Z Has data issue: false hasContentIssue false

Strictly localizable measures

Published online by Cambridge University Press:  22 January 2016

P. Jiménez Guerra
Affiliation:
Dpto. de Teoría de Funciones, Facultad de C. Matemáticas, Universidad Complutense Madrid-3 (SPAIN)
B. Rodríguez-Salinas
Affiliation:
Dpto. de Teoría de Funciones, Facultad de C. Matemáticas, Universidad Complutense Madrid-3 (SPAIN)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper it is proved that every locally strictly localizable Radon measure of type (ℋ) is strictly localizable, from where it follows immediately the existence of lifting for these measures.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

[ 1 ] Chatterji, S. D., Desintegration of measures and liftings, Proc. of the Symposium on vector and operator valued measures and applications, Acad. Press, New York (1973), 6983.Google Scholar
[ 2 ] Ionescu Tulcea, A. and , C, Topics in the theory of lifting, Springer, Berlin, 1969.CrossRefGoogle Scholar
[ 3 ] Maharam, D., On a theorem of von Neuman, Proc. Amer. Math. Soc, 9 (1958), 187994.Google Scholar
[ 4 ] Neumann von, J., Algebraische Reprasentaten der Funktionen bis auf eine Menge von Masse Null, J. Crelle, 165 (1931), 109115.CrossRefGoogle Scholar
[ 5 ] Rodrí guez-Salinas, B., Teoría de la medida sobre los espacios topológicos no localmente compactos, Rev. Mat. Hispano-Amer., (4), 32 (1973), 257274.Google Scholar
[ 6 ] Rodríguez-Salinas, B., μ-espacios de Suslin y Lusin. Propiedad del lifting fuerte, Rev. R. Acad. Ci. Madrid, 72 (1978), 541557.Google Scholar
[ 7 ] Rodríguez-Salinas, B. and Jiménez Guerra, P., Medidas de Radon de tipo (ℋ) en espacios topológicos arbitrarios, Mem. R. Acad. Ci. Madrid, t. X, 1979.Google Scholar
[ 8 ] Rodríguez-Salinas, B. and Jiménez Guerra, P., Espacios de Radon de tipo (ℋ), Rev. R. Acad. Ci. Madrid, 69 (1975), 761774.Google Scholar
[ 9 ] Ryan, R., Representative sets and direct sums, Proc. Amer. Math. Soc, 15 (1964), 387390.Google Scholar
[10] Schwartz, L., Radon measures on arbitrary topological spaces and cylindrical measures, Oxford University Press, 1973.Google Scholar
[11] Segal, I. E., Equivalences of measure spaces, Amer. J. Math., 73 (1951), 275313.Google Scholar