Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:09:20.908Z Has data issue: false hasContentIssue false

Stochastic Differential Equations in a Differentiable Manifold

Published online by Cambridge University Press:  22 January 2016

Kiyosi Itô*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theory of stochastic differential equations in a differentiate manifold has been established by many authors from different view-points, especially by R Lévy [2], F. Perrin [1], A. Kolmogoroff [1] [2] and K. Yosida [1] [2]. It is the purpose of the present paper to discuss it by making use of stochastic integrals.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1950

References

[1] Doob, J. L.: Stochastic processes depending on a continuous parameter, Trans. Amer. Math. Soc. 42, 1937.Google Scholar
[1] Ito, K.: Stochastic integral, Proc. Imp. Acad. Tokyo, Vol. 20, No. 8 (1944).Google Scholar
[2] Ito, K.: On a stochastic integral equation, Proc. Imp, Acad. Tokyo, Vol. 22, No. 2 (1946).Google Scholar
[3] Ito, K.: Stochastic differential equations, forthcoming in the Memoirs of Amer. Math. Soc. Google Scholar
[1] Kolmogoroff, A.: Zur Theorie der stetigen zufälligen Prozesse, Math. Ann. 108 (1933).CrossRefGoogle Scholar
[2] Kolmogoroff, A.: Umkehrbarkeit der stetigen Naturgestze, Math, Ann. 113 (1937).CrossRefGoogle Scholar
[1] Levy, P.: Theorie de l’addition des variables aléatoires, Paris (1937).Google Scholar
[2] Levy, P.: Processus stochastiques et mouvement brownien, Paris (1948).Google Scholar
[1] Perrin, F.: Étude mathematique du mouvement brownien de rotation, Ann. Éc. Norm., (3), 45 (1928).Google Scholar
[1] Yosida, K.: Brownian motion on the surface of the 3-sphere, Ann. of Math. Statistics, 20, 2 (1949).Google Scholar
[2] Yosida, K.: Integration of Fokker-Planck’s equation in a compact Riemannian space, Arkiv for Mathematik, 1, 9 (1949).Google Scholar