Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T05:03:37.953Z Has data issue: false hasContentIssue false

The Space of Dirichlet-Finite Solutions of the Equation Δu = Pu on a Riemann Surface

Published online by Cambridge University Press:  22 January 2016

Mitsuru Nakai*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be an open Riemann surface. By a density P on R we mean a non-negative and continuously differentiable functions P(z) of local parameters z = x + iy such that the expression P(z)dxdy is invariant under the change of local parameters z. In this paper we always assume that P≢0 unless the contrary is explicitly mentioned. We consider an elliptic partial differential equation

which is invariantly defined on R.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1961

References

[1] Mori, A.: On the existence of harmonic functions on a Riemann surface, Jour. Fac. Sci. Univ. Tokyo, I, 6, 247257 (1951).Google Scholar
[2] Myrberg, L.: Über die Integration der Differentialgleichung Δu = c(P)u auf offenen Riemannschen Flächen, Math. Scand., 2, 142152(1954).Google Scholar
[3] Myrberg, L.: Über die Existenz der Greenshen Funktion der Gleichung Δu-c(P)u auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., A.I. 170(1954).Google Scholar
[4] Nakai, M.: A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J., 17, 181218(1960).Google Scholar
[5] Ozawa, M.: Classification of Riemann surfaces, Kȯdai Math. Sem. Rep., 4, 6376 (1954).Google Scholar
[6] Ozawa, M.: A set of capacity zero and the equation Δu = Pu , Kȯdai Math. Sem. Rep., 12, 7681(1960).Google Scholar
[7] Parreau, M.: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. l’Inst. Fourier, 3, 103197(1952).Google Scholar
[8] Royden, H. L.: The equation Δu = Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., A.I. 271(1959).Google Scholar
[9] Tȯki, Y.: On the examples in the classification of open Riemann surfaces (I), Osaka Math. J., 5, 267280(1953).Google Scholar
[10] Virtanen, K. I.: Über die Existenz von beschränkten harmonischen Funktionen auf offenen Riemannschen Flächen, Ann. Acad. Sci. Fenn, A.I. 75(1950).Google Scholar