Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T23:32:32.605Z Has data issue: false hasContentIssue false

Some Results on Value Distribution of Meromorphic Functions in the Unit Disk

Published online by Cambridge University Press:  22 January 2016

Kam-Fook Tse*
Affiliation:
Syracuse University, Syracuse, New York, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let C and D be the unit circle and the open unit disk respectively. We shall use p(z,z′) to represent the non-Euclidean distance [3, p. 263] between the two points z and z′ in D, and X(w, w′) to represent the chordal distance between the two points w and w′ on the Riemann Sphere Ω.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1969

References

[1] Bagemihl, F., Some Identity and Uniqueness Theorems for Normal Meromorphic Functions. Ann. Acad. Scient. Fenn. A.I. 299 (1961), pp. 15.Google Scholar
[2] Bagemihl, F., The Lindelöf Theorem and the Real and Imaginary Parts of Normal Functions. Mich. Math. J., Vol. 9 (1962), pp. 1520.CrossRefGoogle Scholar
[3] Bagemihl, F., and Seidel, W., Behavior of Meromorphic Functions on Boundary Paths with Applications to Normal Functions. Arch. Math. Vol. 11 (1960), pp. 263269.Google Scholar
[4] Bagemihl, F., and Seidel, W., Koebe Arcs and Fatou Points of Normal Functions. Comment. Math. Helv. Vol. 36 (1961), pp. 918.CrossRefGoogle Scholar
[5] Collingwood, E.F., and Piranian, G., Tsuji Functions with Segments of Julia. Math. Z. Vol. 84 (1964), pp. 246253.Google Scholar
[6] Gauthier, P., Dissertation, Wayne State University, Detroit, Michigan, U.S.A. Google Scholar
[7] Gavrilov, V.I., On the Distribution of Values of Non-normal Meromorphic Functions in the Unit Disk, (in Russian) Mat. Sb. 109 (n.s. 67) (1965), pp. 408427.Google Scholar
[8] Lappan, P., Some Results on Harmonic Functions. Math. Z. Vol. 90 (1965), pp. 155159.Google Scholar
[9] Lehto, O., and Virtanen, K. L., Boundary Behavior and Normal Meromorphic Functions. Acta Math. Vol. 97 (1957), pp. 4764.Google Scholar
[10] Montel, P., Leçon sur les Families Normales de Fonctions Analytiques et leur Applications. Gauthier-Viliars et Cie, Paris, 1927.Google Scholar
[11] Noshiro, K., Contribution to the Theory of Meromorphic Functions in the Unit Circle. J. Fac. Sci. Hokkaido Univ. Vol. 7 (1938), pp. 149159.Google Scholar
[12] Noshiro, K., Cluster Sets, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960.Google Scholar
[13] Seidel, W., Holomorphic Function with Spiral Asymptotic Paths, Nagoya Math. J. 14, (1959), pp. 159171.Google Scholar
[14] Tsuji, M., A Theorem on the Boundary Behavior of Meromorphic Function in |z|→1. Comment Math., Univ. St. Pauli, Vol. 8, (1960), pp. 5355.Google Scholar
[15] Valiron, G., Sur les singularités de certaines fonctions holomorphes et de leurs inverses. J. Math. Pur. Appl. (IX, Ser.) 15 (1936), pp. 423435.Google Scholar
[16] Yosida, K., On a class of Meromorphic Functions. Proc. Phys-Math. Sci. Japan 3 ser., Vol. 16 (1934), pp. 227235.Google Scholar