Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T23:37:41.415Z Has data issue: false hasContentIssue false

Some remarks about generalized functionals of complex white noise

Published online by Cambridge University Press:  22 January 2016

Friedrich Jondral*
Affiliation:
Institut für Angewandte Mathematik, Technische Universität Braunschweig
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let us start with a short survey concerning complex white noise (for details see Hida [3]): Let be the space of real valued rapidly decreasing testing functions and its complexification.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1981

References

[ 1 ] Gâteaux, R., Sur diverses questions de calcul fonctionel, Bulletin de la Société Math, de France, vol. 50 (1922), pp. 121.Google Scholar
[ 2 ] Hida, T., Complex white noise and infinite dimensional unitary group, lecture note, Nagoya University (1971).Google Scholar
[ 3 ] Hida, T., Brownian motion, Iwanami Publ. Comp., Tokyo (1975) (in Japanese, an English translation will appear in Springer-Verlag).Google Scholar
[ 4 ] Hida, T., Analysis of Brownian functionals, lecture note (2nd edition), Carleton University (Ottawa) (1978).Google Scholar
[ 5 ] Hida, T., Generalized multiple Wiener integrals, Proceedings of the Japan Academie, vol. 54, ser. A, no. 3 (1978), pp. 5558.Google Scholar
[ 6 ] Levy, P., Problèmes concrets d’analyse fonctionelle, Gauthier-Villars, Paris (1951).Google Scholar
[ 7 ] Lions, J. L. and Magenes, E., Non-homogeneous boundary value problems and applications (vol.1), Springer-Verlag, Berlin-Heidelberg-New York (1972).Google Scholar
[ 8 ] Taylor, A. E., Analytic functions in general analysis, Annali della R. Scoula Normale Superiore de Pisa (2), vol. 6 (1937), pp. 277292.Google Scholar