Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T05:16:57.981Z Has data issue: false hasContentIssue false

Some notes on the moduli of stable sheaves on elliptic surfaces

Published online by Cambridge University Press:  22 January 2016

Kōta Yoshioka*
Affiliation:
Department of Mathematics, Kobe University, Kobe, 657-8501, Japan, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we shall consider the birational structure of moduli of stable sheaves on elliptic surfaces, which is a generalization of Friedman’s results to higher rank cases. As applications, we show that some moduli spaces of stable sheaves on ℙ2 are rational. We also compute the Picard groups of those on Abelian surfaces.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1999

References

[A-K] Altman, A. and Kleiman, S., Compactifying the Picard scheme, Adv. in Math., 35 (1980), 50112.CrossRefGoogle Scholar
[A] Atiyah, M. F., Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3) VII, 2 (1957), 414452.CrossRefGoogle Scholar
[A-B] Atiyah, M. F. and Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308 (1982), 523615.Google Scholar
[D] Drezet, J.-M., Points non factoriels des variétées de modules de faisceaux semi-stable sur une surface rationelle, J. reine angew. Math., 413 (1991), 99126.Google Scholar
[D-N] Drezet, J.-M. and Narasimhan, M. S., Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., 97 (1989), 5394.CrossRefGoogle Scholar
[F] Friedman, R., Vector bundles and SO(3)-invariants for elliptic surfaces III, Preprint (1993).Google Scholar
[G-H] Göttsche, L. and Huybrechts, D., Hodge numbers of moduli spaces of stable bundles on K3 surfaces, Preprint (1994).Google Scholar
[K] Knutson, D., Algebraic Spaces, Lecture Notes in Math. 203, Springer-Verlag.Google Scholar
[L] Langton, S. G., Valuative criteria for families of vector bundles on an algebraic varieties, Ann. of Math., 101 (1975), 88110.CrossRefGoogle Scholar
[L-B] Lange, H. and Birkenhake, Ch., Complex Abelian Varieties, Springer-Verlag.CrossRefGoogle Scholar
[Li1] Li, J., The first two Betti numbers of the moduli spaces of vector bundles on surfaces, Preprint (1995).Google Scholar
[Li2] Li, J., Picard groups of the moduli spaces of vector bundles over algebraic surfaces, moduli of vector bundles, Lect. Notes in Pure and Applied Math. 179, Deckker, Marcel, pp. 129146.Google Scholar
[Ma1] Maruyama, M., Moduli of stable sheaves II, J. Math. Kyoto Univ., 18 (1978), 557614.Google Scholar
[Ma2] Maruyama, M., Moduli of algebraic vector bundles, in preparation.Google Scholar
[Mu1] Mukai, S., Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ., 18 (1978), 239272.Google Scholar
[Mu2] Mukai, S., Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math., 77 (1984), 101116.CrossRefGoogle Scholar
[Mu3] Mukai, S., On the moduli space of bundles on K3 surfaces I, Vector bundles on Algebraic Varieties (1987), 341413.Google Scholar
[Mu4] Mukai, S., Fourier functor and its application to the moduli of bundles on an Abelian variety, Adv. Studies in Pure Math., 10 (1987), 515550.CrossRefGoogle Scholar
[Mu5] Mukai, S., Moduli of vector bundles on K3 surfaces, and symplectic manifolds, Sugaku Expositions, 1 (1988), 139174.Google Scholar
[O] O’Grady, K., The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface, Preprint (1995).Google Scholar
[S] Simpson, C., Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. I.H.E.S., 79 (1994), 47129.CrossRefGoogle Scholar
[Y1] Yoshioka, K., The Betti numbers of the moduli space of stable sheaves of rank 2 on P 2 , J. reine angew. Math., 453 (1994), 193220.Google Scholar
[Y2] Yoshioka, K., The Picard group of the moduli space of stable sheaves on a ruled surface, J. Math. Kyoto Univ., 36 (1996), 279309.Google Scholar
[Y3] Yoshioka, K., Chamber structure of polarizations and the moduli of stable sheaves on a ruled surface, Internat. J. Math., 7 (1996), 411431.CrossRefGoogle Scholar
[Y4] Yoshioka, K., Numbers of Fq-rational points of moduli of stable sheaves on elliptic surfaces, moduli of vector bundles, Lect. Notes in Pure and Applied Math. 179, Deckker, Marcel, pp. 297305.Google Scholar