Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:55:51.565Z Has data issue: false hasContentIssue false

Some applications of Synge’s formula to the theory of several complex variables

Published online by Cambridge University Press:  22 January 2016

Takeshi Sasaki
Affiliation:
Nagoya University and Nihon University
Osamu Suzuki
Affiliation:
Nagoya University and Nihon University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [10] and [11], the second author proved the following theorem by using Synge’s formula:

THEOREM I. Let M be a kähler manifold with positive holomorphic bi-sectional curvature. Then every pseudoconvex domain in M is a Stein manifold.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1977

References

[1] Bishop, R. L. and Crittenden, R. J., Geometry of Manifolds, Academic Press, New York, 1964.Google Scholar
[2] Cheeger, R. I. and Gromoll, R., On the structure of complete manifolds of non-negative curvature, Ann. of Math. 96 (1974), 414443.Google Scholar
[3] Goldberg, S. I. and Kobayashi, S.: On holomorphic bisectional curvature, J. Diff. Geometry 1 (1967), 225233.Google Scholar
[4] Grauert, H., Über Modifikationen und die exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331368.Google Scholar
[5] Grauert, H., Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Zeit. 81 (1964), 377391.Google Scholar
[6] Greene, R. E. and Wu, H., On the subharmonicity and plurisubharmonicity of geodesically convex functions, Indiana Univ. Math. J. 22 (1973), 641653.Google Scholar
[7] Greene, R. E. and Wu, H., Approximation theorems, C-convex exhaustions and manifolds of positive curvature, Bull. Amer. Math. Soc. 81 (1975), 101104.Google Scholar
[8] Gromoll, R. and Meyer, W., On complete open manifolds of positive curvature, Ann. of Math. 90 (1969), 7590.Google Scholar
[9] Hermann, R., Convexity and pseudoconvexity for complex manifolds, J. Math. Mech. 13 (1964), 667672.Google Scholar
[10] Suzuki, O., Pseudoconvex domains on a kähler manifold with positive holomorphic bisectional curvature, to appear in Publ. Res. Inst. Math. Sci., 12.Google Scholar
[11] Suzuki, O., Supplement to “Pseudoconvex domains on a kähler manifold with positive holomorphic bisectional curvature”, to appear in Publ. Res. Inst. Math. Sci., 12.Google Scholar
[12] Takeuchi, A., Domains pseudoconvexes sur les variétés kähleriennes, J. Math. Kyoto Univ. 6-3 (1967), 323357.Google Scholar
[13] Wu, H., Negatively curved kähler manifolds, Notices Amer. Math. Soc. 14 (1967), 515.Google Scholar