Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T14:11:25.341Z Has data issue: false hasContentIssue false

A separation theorem in dimension 3

Published online by Cambridge University Press:  22 January 2016

F. Acquistapace
Affiliation:
Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy, E-mail: [email protected], [email protected], [email protected]
F. Broglia
Affiliation:
Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy, E-mail: [email protected], [email protected], [email protected]
E. Fortuna
Affiliation:
Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 2, 56127 Pisa, Italy, E-mail: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let M be a compact non-singular real affine algebraic variety and let A, B be open disjoint semialgebraic subsets of M. Define (where —4 denotes the Zariski closure).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1996

References

[AcBg] Acquistapace, F., Broglia, F., More about signatures and approximation, Geometriae Dedicata, 50 (1994), 107116.CrossRefGoogle Scholar
[AcBgF] Acquistapace, F., Broglia, F., Fortuna, E., When is a distribution of signs locally completable?, Canad. J. Math., 46 (1994), 449473.Google Scholar
[AnBrRz] Andradas, C., Bröcker, L., Ruiz, J. M., Constructible sets in real geometry, (1996), Erg. Math. 33, Springer-Verlag.Google Scholar
[BoCRy] Bocknak, J., Coste, M., Roy, M. F., Géométrie algébrique réelle, (1987), Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
[Br1] Bröcker, L., On the separation of basic semialgebraic sets by polynomials, Manuscripta Math., 60 (1988), 497508.Google Scholar
[Br2] Bröcker, L., On basic semialgebraic sets, Exp. Math., 9 (1991), 289334.Google Scholar
[F] Fortuna, E., Distribution de signes, Mathematika, 38 (1991), 5062.CrossRefGoogle Scholar
[P] Pernazza, L., Decidability of the separation problem in dim 2, to appear.Google Scholar
[Rz] Ruiz, J. M., A note on a separation problem, Arch. Math., 43 (1984), 422426.Google Scholar