Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T23:42:21.948Z Has data issue: false hasContentIssue false

Riemann Domains with Boundary of Capacity Zero

Published online by Cambridge University Press:  22 January 2016

Hirotaka Fujimoto*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The well-known Thullen-Remmert-Stein’s theorem ([9], [7]) asserts that, for a domain D in CN and an n-dimensional irreducible analytic set S in D, a purely n-dimensional analytic set A in DS has an essential singularity at any point in 5 if A has at least one essential singularity in S. In [1], E. Bishop generalized this to the case that A has the boundary of capacity zero in his sense. Afterwards, in [8], W. Rothstein obtained more precise informations on the essential singularities of A under the assumption dim A = 1. The main purpose in this paper is to generalize these Rothstein’s results to the case of arbitrary dimensional analytic sets.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1971

References

[1] Bishop, E., Conditions for the analyticity of certain sets, Mich. Math. J., 11 (1964), 289304.Google Scholar
[2] Grauert, H. and Remmert, R., Plurisubharmonisches Funktionen in komplexen Räume, Math. Z., 65 (1956), 175194.Google Scholar
[3] Grauert, H. and Remmert, R., Komplexe Räume, Math. Ann., 136 (1958), 245318.Google Scholar
[4] Mori, A., On Riemann surfaces, on which no bounded harmonic function exists, J. Math. Soc. Japan, 3 (1951), 285289.CrossRefGoogle Scholar
[5] Nakai, M., On Evans potential, Proc. Japan Acad., 38 (1962), 624629.Google Scholar
[6] Nishino, T., Sur les ensembles pseudoconcaves, J. Màth. Kyoto Univ., 1 (1962), 225245.Google Scholar
[7] Remmert, R. and Stein, K., Über die wesentlichen singularitäten analytischer Mengen, Math. Ann., 126 (1953), 263306.CrossRefGoogle Scholar
[8] Rothstein, W., Das Maximumprinzip und die Singularitäten analytischer Mengen, Inv. Math., 6 (1968), 163184.Google Scholar
[9] Thullen, P., Uber die wesentlichen Singularitäten analytischer Funktionen und Flächen im Räume von n komplexen Veränderlichen, Math. Ann., 111 (1935), 137157.Google Scholar
[10] Tsuji, M., Potential theory in modern function theory, Maruzen, Tokyo, 1959.Google Scholar