Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T00:25:23.724Z Has data issue: false hasContentIssue false

Remarks on lifting of Cohen-Macaulay property

Published online by Cambridge University Press:  22 January 2016

Manfred Herrmann
Affiliation:
Department of Mathematics, Köln University, D-5000 Köln 41West-Germany
Shin Ikeda
Affiliation:
Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (R, m) be a local noetherian ring and I a proper ideal in R. Let (I) be the Rees-ring n≥0 In with respect to I. In this note we describe conditions for I and R in order that the Cohen-Macaulay property (C-M for short) of R/I can be lifted to R and (I), see Propositions 1.2, 1.3. and 1.4.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1983

References

[D] Davis, E. D., Ideals of the principal class, R-sequences and a certain monoidal transformation, Pacific J. Math., 20 (1967), 197205.CrossRefGoogle Scholar
[G] Goto, S., The associated graded rings of Buchsbaum rings, preprint.Google Scholar
[H] Herzog, J., Ein Cohen-Macaulay-Kriterium mit Anmendungen auf den Konormalenmodul und den Differentialmodul, Math. Z., 163 (1978), 149162.CrossRefGoogle Scholar
[Hu] Huneke, C., Linkage and the Koszul homology of ideals, preprint.CrossRefGoogle Scholar
[HSV] Herrmann, M., Schmidt, R. and Vogel, W., Theorie der normalen Flachheit, Teubner, Leipzig, 1977.Google Scholar
[H-O-1] Herrmann, M. and Orbanz, U., Faserdimension von Aufblasungen lokaler Rings und Äquimultiplizität, J. Math. Kyoto Univ., 20 (1980), 651659.Google Scholar
[H-O-2] Herrmann, M. and Orbanz, U., On equimultiplicity, Math. Proc. Cambridge Philos. Soc., 91 (1982), 207213.CrossRefGoogle Scholar
[I] Ikeda, S., Cohen-Macaulayness of Rees algebras of local rings, Nagoya Math. J., 89 (1983), 4763.CrossRefGoogle Scholar
[N-R] Northcott, D. G. and Rees, D., Reduction of ideals in local rings, Proc. Cambridge Philos. Soc., 50 (1954), 145158.CrossRefGoogle Scholar
[R] Roberts, P., Homological Invariants of Modules over Commutative Rings, Sémnaire de Mathématiques Supérieures, Universite de Montreal (1979).Google Scholar
[S-T-C] Schenzel, P., Trung, N. V. and Cuong, N. T., Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr., 85 (1978), 5773.CrossRefGoogle Scholar
[V] Valla, G., Certain graded algebras are always Cohen-Macaulay, J. Algebra, 42 (1976), 537548.CrossRefGoogle Scholar
[V-V] Valabrega, P. and Valla, G., Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93101.CrossRefGoogle Scholar