Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T00:00:31.082Z Has data issue: false hasContentIssue false

A remark on the Grothendieck-Lefschetz theorem about the Picard group

Published online by Cambridge University Press:  22 January 2016

Lucian Bădescu*
Affiliation:
University of Bucharest, Dept. of Mathematics
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be an algebraically closed field of arbitrary characteristic. The term “variety” always means here an irreducible algebraic variety over K. The notations and the terminology are borrowed in general from EGA [4].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1978

References

[1] Andreotti, A. and Frankel, T., The Lefschetz theorem on hyperplane sections, Annals Math., 69(3) (1959), 731717.CrossRefGoogle Scholar
[2] Danilov, V. I., The divisor class group of the completion of a ring (russian), Mat. Sbornik, 77(119):4 (1968), 533541.Google Scholar
[3] Deligne, P., Cohomologie des intersections complètes, Sém. Géom. Alg. du Bois Marie (SGA 7, II), Springer Lect. Notes Math., No. 340 (1973).Google Scholar
[4] Dieudonné, J. and Grothendieck, A., (EGA) Eléments de Géométrie Algébrique, cap. I-III, Publ. Math. IHES (19601961).Google Scholar
[5] Grothendieck, A., (SGA-2) Séminaire de Géométrie Algébrique, Bures sur Yvette (1962).Google Scholar
[6] Grothendieck, A., Fondements de la géométrie algébrique, extraits du sém. Bourbaki 1957–1962, Secr. Math. Paris, no. 232, 236.Google Scholar
[7] Hartshorne, R., Ample subvarieties of algebraic varieties, Springer Lect. Notes Math., No. 156 (1970).CrossRefGoogle Scholar
[8] Hartshorne, R., Equivalence relations on algebraic cycles and subvarieties of small codimension, Proceedings Symp. Pure Math., Vol.29 (Arcata, 1974) (1975).CrossRefGoogle Scholar
[9] Kleiman, S., Toward a numerical theory of ampleness, Annals Math., 84 (1966), 239344.CrossRefGoogle Scholar
[10] Mori, S., On affine cones associated with polarized varieties, Japanese J. Math., Vol. 1(2) (1975), 301309.CrossRefGoogle Scholar
[11] Mumford, D., Lectures on curves on an algebraic surface, Annals Math. Studies, No. 59, Princeton (1966).Google Scholar
[12] Hartshorne, R., Abelian varieties, Lect. Tata Inst., Bombay (1968).Google Scholar
[13] Robbiano, L., A problem of complete intersections, Nagoya Math. J., 52 (1973), 129132.CrossRefGoogle Scholar
[14] Robbiano, L., Some properties of complete intersections in “good” projective varieties, Nagoya Math. J., 61 (1976), 103111.CrossRefGoogle Scholar
[15] Serre, J.P., (FAC) Faisceaux algébriques cohérents, Annals Math., 61 (1955), 197278.CrossRefGoogle Scholar
[16] Serre, J.P., (GAGA) Géométrie Algébrique et Géométrie Analytique, Ann. Inst. Fourier, 6 (1956), 142.Google Scholar