Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:10:15.143Z Has data issue: false hasContentIssue false

A relation between order and defects of meromorphic mappings of Cn into Pn(C)

Published online by Cambridge University Press:  22 January 2016

Junjiro Noguchi*
Affiliation:
Department of Mathematics, Faculty of Science, Hiroshima University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f be a meromorphic mapping of the n-dimensional complex plane Cn into the N-dimensional complex projective space PN(C). We denote by T(r,f) the characteristic function of f and by N(r,f*H) the counting function for a hyperplane HPN(C). The purpose of this paper is to establish the following results.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1975

References

[1] Edrei, A. and Fuchs, W. H. J., On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292328.Google Scholar
[2] Edrei, A. and Fuchs, W. H. J., The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (1964), 233249.Google Scholar
[3] Griffiths, P. and King, J., Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145220.Google Scholar
[4] Hayman, W. K., Meromorphic functions, Oxford University Press, London, 1964.Google Scholar
[5] Lelong, P., Fonctions entières (n variables) et fonctions plurisousharmoniques d’ordre fini dans O, J. Analyse Math. 12 (1964), 365407.CrossRefGoogle Scholar
[6] Lelong, P., Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, Paris, 1968.Google Scholar
[7] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.Google Scholar
[8] Ozawa, M., On the growth of algebroid functions with several deficiencies, II, Ködai Math. Sem. Rep. 22 (1970), 129137.Google Scholar
[9] Stoll, W., Ganze Funktionen endlicher Ordnung mit gegebenen Nullstellenflachen, Math. Z. 57 (1953), 211237.Google Scholar
[10] Toda, N., Sur la croissante de fonctions algebroides à valeurs deficientes, Ködai Math. Sem. Rep. 22 (1970), 324337.Google Scholar