Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T14:24:38.522Z Has data issue: false hasContentIssue false

Rationality of moduli spaces of vector bundles on rational surfaces

Published online by Cambridge University Press:  22 January 2016

Laura Costa
Affiliation:
Dept. Algebra y Geometría, Facultad de Matemáticas, Universidad de Barcelona, 08007 Barcelona, Spain
Rosa M. Miro-Ŕoig
Affiliation:
Dept. Algebra y Geometría, Facultad de Matemáticas, Universidad de Barcelona, 08007 Barcelona, Spain, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a smooth rational surface. In this paper, we prove the rationality of the moduli space MX,L(2; c1; c2) of rank two L-stable vector bundles E on X with det (E) = c1Pic(X) and c2(E) = c2 ≫ 0.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2002

References

[Art90] Artamkin, I. V., Stable bundles with c1 = 0 on rational surfaces, Math. USSR Izvestiya, 36 (1990), 231246.Google Scholar
[CMR99] Costa, L. and Miró-Roig, R. M., On the rationality of moduli spaces of vector bundles on Fano surfaces., J. Pure Applied Algebra, 137 (1999), 199220.CrossRefGoogle Scholar
[Don86] Donaldson, S., Polynomial invariants for smooth 4-manifolds, Topology, 29 (1986), 257315.Google Scholar
[ES87] Ellisngsrud, G. and Stromme, S. A., On the rationality of the moduli space for stable rank-2 vector bundles on 2 , LNM, 1273 (1987), pp. 363371.Google Scholar
[Gie77] Gieseker, D., On the moduli of vector bundles on an algebraic surface, Ann. Math., 106 (1977), 4560.Google Scholar
[GL96] Gieseker, D. and Li, J., Moduli of high rank vector bundles over surfaces, J. Amm. Math. Soc., 9 (1996), 107151.CrossRefGoogle Scholar
[Har77] Hartshorne, R., Algebraic Geometry, GTM 52, Springer-Verlag, 1977.Google Scholar
[HL93] Hirschowitz, A. and Laszlo, Y., Fibrés génériques sur le plan projectif, Math. Annalen, 297 (1993), 85102.CrossRefGoogle Scholar
[Mae90] Maeda, T., An elementary proof of the rationality of the moduli space of rank 2 vector bundles on 2 , Hirosh. Math. J., 20 (1990), 103107.Google Scholar
[Mar75] Maruyama, M., Stable vector bundles on an algebraic surface, Nagoya Math. J., 58 (1975), 2568.Google Scholar
[Mar85] Maruyama, M., Proc. Sendai Conf. (1985).Google Scholar
[MR93] Miró-Roig, RM., The moduli spaces of rank 2 stable vector bundles over Veronesean surfaces, Manusc. Math., 72 (1993), 391402.Google Scholar
[Nak93] Nakashima, T., Moduli of stable bundles on blown up surfaces, J. Math. Kyoto Univ., 333 (1993), 571581.Google Scholar
[O’G96] O’Grady, K., Moduli of vector bundles on projective surfaces: some basic results, Inv. Math., 123 (1996), 141206.Google Scholar
[Qin93] Qin, Z., Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geometry, 37 (1993), 397415.CrossRefGoogle Scholar
[Wal98] Walter, C., Irreducibility of moduli spaces of vector bundles on birationally ruled surfaces, Algebraic Geometry (Catania, 1993/Barcelona, 1994), Lect. Not. Pure Appl. Math., 200, Deckker, 1998, pp. 201211.Google Scholar
[Zuo91] Zuo, K., Generic smoothness of the moduli of rank 2 stable bundles over analgebraic surface, Math. Z., 207 (1991), 629643.Google Scholar