Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T23:00:50.890Z Has data issue: false hasContentIssue false

QUASI-SPLIT SYMMETRIC PAIRS OF $U(\mathfrak {gl}_N)$ AND THEIR SCHUR ALGEBRAS

Published online by Cambridge University Press:  21 September 2020

YIQIANG LI
Affiliation:
Department of Mathematics, University at Buffalo, SUNY Buffalo, NY 14260, [email protected]
JIERU ZHU*
Affiliation:
Department of Mathematics, University at Buffalo, SUNY Buffalo, NY 14260, USA

Abstract

We establish explicit isomorphisms of two seemingly-different algebras, and their Schur algebras, arising from the centralizers of two different type B Weyl group actions in Schur-like dualities. We provide a presentation of the geometric counterpart of the above Schur algebras in [1] specialized at $q=1$ .

Type
Article
Copyright
© (2020) The Authors. The publishing rights in this article are licenced to Foundation Nagoya Mathematical Journal under an exclusive license

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bao, H., Kujawa, J., Li, Y., and Wang, W., Geometric Schur duality of classical type , Transform. Groups 23 (2018), no. 2, 329389.10.1007/s00031-017-9447-4CrossRefGoogle Scholar
Bao, H. and Wang, W., Canonical bases arising from quantum symmetric pairs , Invent. Math. 213 (2018), no. 3, 10991177.10.1007/s00222-018-0801-5CrossRefGoogle Scholar
Bao, H. and Wang, W., A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs , Astérisque 402 (2018), no. 402, vii+134.Google Scholar
Beilinson, A., Lusztig, G., and MacPherson, R., A geometric setting for the quantum deformation of GLn, Duke Math. J. 61 (1990), 655677.10.1215/S0012-7094-90-06124-1CrossRefGoogle Scholar
Doty, S. and Giaquinto, A., Presenting Schur algebras , Int. Math. Res. Not. 38 (2002), no. 36, 19071944.10.1155/S1073792802201026CrossRefGoogle Scholar
Green, R., Hyperoctahedral Schur algebras , J. Algebra 192 (1997), no. 1, 418438.10.1006/jabr.1996.6935CrossRefGoogle Scholar
Hu, J. and Stoll, F., On double centralizer properties between quantum groups and Ariki-Koike algebras , J. Algebra 275 (2004), no. 1, 397418.10.1016/j.jalgebra.2003.10.026CrossRefGoogle Scholar
Kolb, S., Quantum symmetric Kac-Moody pairs , Adv. Math. 267 (2014), 395469.10.1016/j.aim.2014.08.010CrossRefGoogle Scholar
Lai, C.-J., Nakano, D., and Xiang, Z., On q-Schur algebras corresponding to Hecke algebras of type B, arXiv e-prints (2019), arXiv:1902.07682.Google Scholar
Letzter, G., Subalgebras which appear in quantum Iwasawa decompositions , Canad. J. Math. 49 (1997), no. 6, 12061223.10.4153/CJM-1997-059-4CrossRefGoogle Scholar
Li, Y., On canonical bases for the Letzter algebra Ui(sl2), J. Pure Appl. Algebra 224 (2020), 106227.10.1016/j.jpaa.2019.106227CrossRefGoogle Scholar
Li, Y. and Wang, W., Positivity vs negativity of canonical bases , Bull. Inst. Math. Acad. Sin. (N.S.) 13 (2018), no. 2, 143198.Google Scholar
Mazorchuk, V. and Stroppel, C., G(l,k,d)-modules via groupoids , J. Algebraic Combin. 43 (2016), no. 1, 1132.10.1007/s10801-015-0623-0CrossRefGoogle Scholar
Sakamoto, M. and Shoji, T., Schur–Weyl reciprocity for Ariki-Koike algebras , J. Algebra 221 (1999), no. 1, 293314.10.1006/jabr.1999.7973CrossRefGoogle Scholar
Springer, T. A., The classification of involutions of simple algebraic groups , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 655670.Google Scholar