No CrossRef data available.
Article contents
A Property of Some Poincaré Theta-Series
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Consider circles cν(ν = ±1, ±2, …) with centers ξν on the real axis of the z-plane such that they are disjoint from each other and cluster to infinity z = ∞ from the both sides of the real axis. Here, without loss of generality, we may assume that for every positive integer ν.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1960
References
[1]
Burnside, W., On a class of automorphic functions, Proc. London Math. Soc., 23 (1891), 49–88.Google Scholar
[2]
Myrberg, L., Normalintegral auf zweiblättrigen Riemannschen Flächen mit reelen Verzweigungspunkten, Ann. Acad. Sci. Fenn., A-I, 71 (1950), 1–50.Google Scholar
[3]
Myrberg, P. J., Über analytische Funktionen auf transzendenten zweiblättrigen Riemannschen Flächen mit reelen Verzweigungspunkten, Acta Math., 76 (1944), 184–224.Google Scholar
[4]
Myrberg, P. J., Über Integrale auf transzendenten symmetrischen Riemannschen Flachen, Ann. Acad. Sci. Fenn., A-I, 31 (1945), 1–20.Google Scholar
[5]
Myrberg, P. J., Über analytische Funktionen auf transzendenten Riemannschen Flächen, X. Congr. Math. Scand., Copenhagen, (1946), 77–96.Google Scholar
You have
Access