Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T06:45:48.165Z Has data issue: false hasContentIssue false

A problem of complete intersections

Published online by Cambridge University Press:  22 January 2016

Lorenzo Robbiano*
Affiliation:
Instituto Matematico, dell’Università di Genova-Via
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a non-singular projective surface in (k an algebraically closed field of characteristic 0) and C an irreducible curve, which is a set-theoretically complete intersection in X; is it true that C is actually a complete intersection in X?

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Gallarati, (Dionisio): Recerche sul contatto di superficie algebriche lungo curve. Académie royale de Belgique Memoires in 8° (XXXII Fascicule 3) (1960).Google Scholar
[2] Grothendieck, (Alexander): SGA 2 Cohomologie locale des faisceaux Cohérents et Théorèmes des Lefschetz locaux et globaux. North-Holland Publ. Comp. (Amsterdam) (1962).Google Scholar
[3] Hartshorne, (Robin): Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156 Springer (1970).CrossRefGoogle Scholar
[4] Lefschetz, (Solomon): On certain numerical invariants of algebraic varieties. Trans. Amer. Math Soc, 22 (1921), p. 326363.Google Scholar
[5] Samuel, (Pierre): Sur les anneaux factoriels. Bull. Soc. Math. France, 89 (1961), p. 155173.Google Scholar
[6] Serre, (Jean Pierre): Faisceaux algébriques cohérents. Annals of Math., 61, n. 2 (1955), p. 197278.Google Scholar
[7] Storch, (Uwe): Fastfaktorielle Ringe. Schriftenreihe des Math. Inst. (Münster) Heft 36 (1967).Google Scholar