Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T13:12:16.790Z Has data issue: false hasContentIssue false

Periodicities of T-systems and Y-systems

Published online by Cambridge University Press:  11 January 2016

Rei Inoue
Affiliation:
Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, 513-8670, [email protected]
Osamu Iyama
Affiliation:
Graduate School of Mathematics, Nagoya University, Nagoya, 464-8604, [email protected]
Atsuo Kuniba
Affiliation:
Institute of Physics, University of Tokyo, Tokyo, 153-8902, [email protected]
Tomoki Nakanishi
Affiliation:
Graduate School of Mathematics, Nagoya University, Nagoya, 464-8604, [email protected]
Junji Suzuki
Affiliation:
Department of Physics, Faculty of Science, Shizuoka University, Ohya, 836, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The unrestricted T-system is a family of relations in the Grothendieck ring of the category of the finite-dimensional modules of Yangian or quantum affine algebra associated with a complex simple Lie algebra. The unrestricted T-system admits a reduction called the restricted T-system. In this paper we formulate the periodicity conjecture for the restricted T-systems, which is the counterpart of the known and partially proved periodicity conjecture for the restricted Y-systems. Then, we partially prove the conjecture by various methods: the cluster algebra and cluster category method for the simply laced case, the determinant method for types A and C, and the direct method for types A, D, and B (level 2).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2010

References

[A] Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential, arXiv:0805.1035.Google Scholar
[ABF] Andrews, G. E., Baxter, R. J., and Forrester, P. J., Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Stat. Phys., 35 (1984), 193266.CrossRefGoogle Scholar
[ASS] Assem, I., Simson, D., and Skowronski, A., Elements of the Representation Theory of Associative Algebras, Vol. 1, Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge University Press, Cambridge, 2006.Google Scholar
[ARS] Auslander, M., Reiten, I., and Smalo, S. O., Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge University Press, Cambridge, 1995.Google Scholar
[BR] Bazhanov, V. V. and Reshetikhin, N., Restricted solid-on-solid models connected with simply laced algebras and conformal field theory, J. Phys. A, 23 (1990), 14771492.CrossRefGoogle Scholar
[B] Bourbaki, N., Groupes et algèbres de Lie, Ch. 4–6, Hermann, Paris, 1968; Masson, Paris, 1981.Google Scholar
[BIRS] Buan, A., Iyama, O., Reiten, I., and Scott, J., Cluster structures for 2-Calabi-Yau categories and unipotent groups, to appear in Compos. Math., preprint, arXiv:math/0701557.Google Scholar
[BMR] Buan, A., Marsh, R., and Reiten, I., Cluster mutation via quiver representations, Comment. Math. Helv., 83 (2008), 143177.CrossRefGoogle Scholar
[BMRRT] Buan, A. B., Marsh, R. J., Reineke, M., Reiten, I., and Todorov, G., Tilting theory and cluster combinatorics, Adv. in Math., 204 (2006), 572618.CrossRefGoogle Scholar
[CC] Caldero, P. and Chapoton, F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., 81 (2006), 595616.CrossRefGoogle Scholar
[CGT] Caracciolo, R., Gliozzi, F., and Tateo, R., A topological invariant of RG flows in 2D integrable quantum field theories, Int. J. Mod. Phys., 13 (1999), 29272932.CrossRefGoogle Scholar
[CK1] Caldero, P. and Keller, B., From triangulated categories to cluster algebras, Invent. Math., 172 (2008), 169211.CrossRefGoogle Scholar
[CK2] Caldero, P. and Keller, B., From triangulated categories to cluster algebras, II, Ann. Sci. Ecole Norm. Sup., 39 (2006), 9831009.CrossRefGoogle Scholar
[CP1] Chari, V. and Pressley, A., Quantum affine algebras, Comm. Math. Phys., 142 (1991), 261283.CrossRefGoogle Scholar
[CP2] Chari, V. and Pressley, A., Quantum affine algebras and their representations, in Proceedings of Representations of Groups, Banff, 1994, 59–78, CMS Conf. Proc. 16, 1995.Google Scholar
[DeK] Dehy, R. and Keller, B., On the combinatorics of rigid objects in 2-Calabi-Yau categories, Int. Math. Res. Not. IMRN, 2008 (2008) rnn029, 17 pages.Google Scholar
[DiK] Francesco, P. Di and Kedem, R., Q-systems as cluster algebras II: Cartan matrix of finite type and the polynomial property, arXiv:0803.0362.Google Scholar
[D1] Drinfel’d, V., Hopf algebras and the quantum Yang–Baxter equation, Soviet. Math. Dokl., 32 (1985), 254258.Google Scholar
[D2] Drinfel’d, V., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl., 36 (1988), 212216.Google Scholar
[FZ1] Fomin, S. and Zelevinsky, A., Cluster algebras I, Foundations, J. Amer. Math. Soc., 15 (2002), 497529.CrossRefGoogle Scholar
[FZ2] Fomin, S. and Zelevinsky, A., Cluster algebras II, Finite type classification, Invent. Math., 154 (2003), 63121.CrossRefGoogle Scholar
[FZ3] Fomin, S. and Zelevinsky, A., Y-systems and generalized associahedra, Ann. of Math., 158 (2003), 9771018.CrossRefGoogle Scholar
[FZ4] Fomin, S. and Zelevinsky, A., Cluster algebras IV, Coefficients, Compos. Math., 143 (2007), 112164.CrossRefGoogle Scholar
[FM] Frenkel, E. and Mukhin, E., Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys., 216 (2001), 2357.CrossRefGoogle Scholar
[FM2] Frenkel, E. and Mukhin, E., The q-characters at roots of unity, Adv. Math., 171 (2002), 139167.CrossRefGoogle Scholar
[FR] Frenkel, E. and Reshetikhin, N., The q-characters of representations of quantum affine algebras and deformations of W-algebras, Contemp. Math., 248 (1999), 163205.CrossRefGoogle Scholar
[FS] Frenkel, E. and Szenes, A., Thermodynamic Bethe ansatz and dilogarithm identities, I, Math. Res. Lett., 2 (1995), 677693.CrossRefGoogle Scholar
[G] Gabriel, P., Auslander-Reiten Sequences and Representation-Finite Algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), pp. 171, Lecture Notes in Math. 831, Springer, Berlin, 1980.Google Scholar
[GT] Gliozzi, F. and Tateo, R., Thermodynamic Bethe ansatz and three-fold triangulations, Int. J. Mod. Phys. A, 11 (1996), 40514064.CrossRefGoogle Scholar
[Ha] Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge University Press, Cambridge, 1988.Google Scholar
[HKOTT] Hatayama, G., Kuniba, A., Okado, M., Takagi, T., and Tsuboi, Z., Paths, crystals and fermionic formulae, Math-Phys odyssey 2001, Progr. Math. Phys., 23 (2002), 205272.Google Scholar
[HKOTY] Hatayama, G., Kuniba, A., Okado, M., Takagi, T., and Yamada, Y., Remarks on fermionic formula, Contemp. Math., 248 (1999), 243291.CrossRefGoogle Scholar
[Hen] Henriques, A., A periodicity theorem for the octahedron recurrence, J. Algebraic Combin., 26 (2007), 126.CrossRefGoogle Scholar
[Her1] Hernandez, D., The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math., 596 (2006), 6387.Google Scholar
[Her2] Hernandez, D., The Kirillov-Reshetikhin conjecture: The general case, arXiv:0704.2838.Google Scholar
[HL] Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras, in preparation; and talk presented by B. Leclerc at Workshop “Lie Theory” held at MSRI, Berkeley, March 2008.Google Scholar
[Hi1] Hirota, R., Nonlinear partial difference equations II: Discrete time Toda equations, J. Phys. Soc. Japan, 43 (1977), 20742078.CrossRefGoogle Scholar
[Hi2] Hirota, R., Discrete two-dimensional Toda molecule equation, J. Phys. Soc. Japan, 56 (1987), 42854288.CrossRefGoogle Scholar
[IY] Iyama, O. and Yoshino, Y., Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172 (2008), 117168.CrossRefGoogle Scholar
[J] Jimbo, M., A q-difference analogue of U(ĝ) and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), 6369.CrossRefGoogle Scholar
[JMO] Jimbo, M., Miwa, T., and Okado, M., Solvable lattice models related to the vector representation of classical simple Lie algebras, Comm. Math. Phys., 116 (1988), 507525.CrossRefGoogle Scholar
[Ka] Kac, V. G., Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, 1990.Google Scholar
[Ked] Kedem, R., Q-systems as cluster algebras, arXiv:0712.2695.Google Scholar
[Kel1] Keller, B., On triangulated orbit categories, Doc. Math., 10 (2005), 551581.CrossRefGoogle Scholar
[Kel2] Keller, B., Cluster algebras, quiver representations and triangulated categories, arXiv:0807.1960.Google Scholar
[Kel3] Keller, B., The periodicity conjecture for pairs of Dynkin diagrams, in preparation.Google Scholar
[Kel4] Keller, B., Deformed CY-completions and their duals, in preparation.Google Scholar
[Ki] Kirillov, A. N., Identities for the Rogers dilogarithm function connected with simple Lie algebras, J. Sov. Math., 47 (1989), 24502459.CrossRefGoogle Scholar
[Ki2] Kirillov, A. N., private communication.Google Scholar
[KR] Kirillov, A. N. and Reshetikhin, N., Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, J. Sov. Math., 52 (1990), 31563164.CrossRefGoogle Scholar
[KP] Klümper, A. and Pearce, P. A., Conformal weights of RSOS lattice models and their fusion hierarchies, Phys. A, 183 (1992), 304350.CrossRefGoogle Scholar
[Kn] Knight, H., Spectra of tensor products of finite-dimensional representations of Yangians, J. Algebra, 174 (1995), 187196.CrossRefGoogle Scholar
[KLWZ] Krichever, I., Lipan, O., Wiegmann, P., and Zabrodin, A., Quantum integrable models and discrete classical Hirota equations, Comm. Math. Phys., 188 (1997), 267304.CrossRefGoogle Scholar
[Ku] Kuniba, A., Thermodynamics of the Uq(Xr (1)) Bethe ansatz system with q a root of unity, Nucl. Phys. B, 389 (1993), 209244.CrossRefGoogle Scholar
[KN] Kuniba, A. and Nakanishi, T., Spectra in conformal field theories from the Rogers dilogarithm, Mod. Phys. Lett. A, 7 (1992), 34873494.CrossRefGoogle Scholar
[KNS1] Kuniba, A., Nakanishi, T., and Suzuki, J., Functional relations in solvable lattice models: I. Functional relations and representation theory, Int. J. Mod. Phys. A, 9 (1994), 52155266.CrossRefGoogle Scholar
[KNS2] Kuniba, A., Nakanishi, T., and Suzuki, J., Functional relations in solvable lattice models: II. Applications, Int. J. Mod. Phys. A, 9 (1994), 52675312.CrossRefGoogle Scholar
[KNT] Kuniba, A., Nakanishi, T., and Tsuboi, Z., The canonical solutions of the Q-systems and the Kirillov-Reshetikhin conjecture, Comm. Math. Phys., 227 (2002), 155190.CrossRefGoogle Scholar
[KOS] Kuniba, A., Ohta, Y., and Suzuki, J., Quantum Jacobi-Trudi and Giambelli formulae for Uq(Br (1)) from the analytic Bethe ansatz, J. Phys. A, 28 (1995), 62116226.CrossRefGoogle Scholar
[KOSY] Kuniba, A., Okado, M., Suzuki, J., and Yamada, Y., Difference L operators related to q-characters, J. Phys. A, 35 (2002), 14151435.CrossRefGoogle Scholar
[KS] Kuniba, A. and Suzuki, J., Functional relations and analytic Bethe ansatz for twisted quantum affine algebras, J. Phys. A, 28 (1995), 711722.CrossRefGoogle Scholar
[N1] Nakajima, H., Quiver varieties and finite dimensional representations of quantum affine algebras, J. Amer. Math. Soc., 14 (2001), 145238.CrossRefGoogle Scholar
[N2] Nakajima, H., Quiver varieties and t-analogues of q-characters of quantum affine algebras, Ann. of Math., 160 (2004), 10571097.CrossRefGoogle Scholar
[N3] Nakajima, H., t-Analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory, 7 (2003), 259274.CrossRefGoogle Scholar
[Pal] Palu, Y., Cluster characters for triangulated 2-Calabi-Yau categories, Ann. Inst. Fourier (Grenoble), 58 (2008), 22212248.CrossRefGoogle Scholar
[Pas] Pasquier, V., Etiology of IRF models, Comm. Math. Phys., 118 (1988), 335364.CrossRefGoogle Scholar
[RTV] Ravanini, F., Tateo, R., and Valleriani, A., Dynkin TBA’s, Int. J. Mod. Phys. A, 8 (1993), 17071727.CrossRefGoogle Scholar
[S] Sato, M., Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kôkyûroku Bessatsu, 439 (1981), 3046.Google Scholar
[V] Volkov, A. Y., On the periodicity conjecture for Y-systems, Comm. Math. Phys., 276 (2007), 509517.CrossRefGoogle Scholar
[YZ] Yang, S.-W. and Zelevinsky, A., Cluster algebras of finite type via Coxeter elements and principal minors, arXiv:0804.3303.Google Scholar
[Z] Zamolodchikov, Al. B., On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B, 253 (1991), 391394.CrossRefGoogle Scholar