Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:35:03.505Z Has data issue: false hasContentIssue false

On the unramified extensions of the prime cyclotomic number field and its quadratic extensions

Published online by Cambridge University Press:  22 January 2016

Norikata Nakagoshi*
Affiliation:
Department of Mathematics, Toyama University, Gofuku 3190, Toyama 930, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is interesting to know what kinds of primes are the factors of the class number of an algebraic number field, and especially to find ones being prime to the degree. About this matter it is desirable to construct the unramified Abelian extensions plainly. In this paper we shall show some of them for the prime cyclotomic number field and its quadratic extensions using the units of subfields.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1989

References

[1] Ankeny, N. C., Artin, E. and Chowla, S. D., The class number of real quadratic number fields, Ann. of Math., (2) 56 (1952), 479493.CrossRefGoogle Scholar
[2] Beach, B. D., Williams, H. C. and Zarnke, C. R., Some computer results on units in quadratic and cubic fields, Proc. of the 25th Summer Meeting of the Canadian Math. Congress, Lakehead Univ., 1971, 609648; MR 49#2656.Google Scholar
[3] Gras, G., Extensions Abélienne non ramifiées de degré premier d’un corps quadratique, Bull. Soc. Math. France, 100 (1972), 177193.CrossRefGoogle Scholar
[4] Gut, M., Relative quadratische Zahlkörper, deren Klassenzahl durch eine vorgegebene ungerade Primzahl teibar ist, Comment. Math. Helv., 28 (1954), 270277.CrossRefGoogle Scholar
[5] Kiselev, A. A., An expression for the number of classes of ideals of real quadratic fields by means of Bernoulli numbers (Russian), Dokl. Akad. Nauk SSSR, 61 (1948), 777779; MR 10, p. 236.Google Scholar
[6] Nakagoshi, N., The structure of the multiplicative group of residue classes modulo pN+1 Nagoya Math. J., 73 (1979), 4160.CrossRefGoogle Scholar
[7] Neumann, O., Relativ-quadratische Zahlkörper, deren Klassenzahlen durch 3 teilbar sind, Math. Nachr., 56 (1973), 281306.CrossRefGoogle Scholar
[8] Parry, C. J., Real quadratic fields with class number divisible by five, Math. Comp., 31 (1977), 10191029.CrossRefGoogle Scholar
[9] Parry, C. J., On the class number of relative quadratic fields, Math. Comp., 32 (1978), 12611270.CrossRefGoogle Scholar
[10] Takagi, T., Zur Theorie der Kreiskörper, J. reine angew. Math., 157 (1927), 246255.Google Scholar
[11] Washington, L. C., Introduction to Cyclotomic Fields, Springer-Verlag, 1982.CrossRefGoogle Scholar
[12] Washington, L. C., On some cyclotomic congruences of F. Thaine, Proc. Amer. Math. Soc, 93 (1985), 1014.CrossRefGoogle Scholar
[13] Yokoi, H., On real quadratic fields containing units with norm–1, Nagoya Math. J., 33 (1968), 139152.CrossRefGoogle Scholar