Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T14:39:46.509Z Has data issue: false hasContentIssue false

On the structure of the idele group of an algebraic number field

Published online by Cambridge University Press:  22 January 2016

Katsuya Miyake*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to present the results of E. Artin and Furtwängler, with which they proved the principal ideal theorem, as a structure theorem of the idele group of an algebraic number field. Such treatment may be helpful to clarify the Arithmetic nature these results possess.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1980

References

[ 1 ] Artin, E., Idealklassen in Oberkörpern und allgemeine Reziprozitäatsgesetze, Abh. Math. Sem. Hamburg 7 (1930).Google Scholar
[ 2 ] Chevalley, C., Deux théorèmes d’arithmétique, J. Math. Soc. Japan 3 (1951).Google Scholar
[ 3 ] Furtwangler, Ph., Beweis des Hauptidealsatzes für Klassenkörper algebraischer Zahlkörper, Abh. Math. Sem. Hamburg 7 (1930).Google Scholar
[ 4 ] Herbrand, J., Sur les théorèmes du genre principal et des ideaux principaux, Abh. Math. Sem. Hamburg 9 (1933).Google Scholar
[ 5 ] Iyanaga, S., Über den allgemeinen Hauptidealsatz, Jap. J. Math. 7 (1930).Google Scholar
[ 6 ] Miyake, K., Models of certain automorphic function fields, Acta Math. 126 (1971).Google Scholar
[ 7 ] Shimura, G., On canonical models of arithmetic quotient of bounded symmetric domains II, Ann. of Math. 92 (1970).CrossRefGoogle Scholar
[ 8 ] Weil, A., Basic Number Theory, Springer-Verlag, Berlin (1967).Google Scholar