Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T22:24:34.574Z Has data issue: false hasContentIssue false

On the projective varieties associated with some subrings of the ring of Thetanullwerte

Published online by Cambridge University Press:  22 January 2016

Riccardo Salvati Manni*
Affiliation:
Dipartimento dio Matematica, Istituto “Guido Castelnuovo”, Università degli Studi di Roma, “La Sapienza”, Piassale Aldo Moro, 2, 1-00185 Roma, Italy
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (X, L) be a principally polarized abelian variety (ppav) of dimension g such that L is a symmetric line bundle, i.e. i*L ≃ L where i is the inversion map i(x) = — x. We shall denote by X[2] the two torsion points of X which are fixed by i. For any x in X[2] we have an isomorphism

(1) .

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1994

References

[1] Fischer, G.; Complex Analytic Geometry, Lecture Notes in Math., 538, Springer-Verlag (1976).CrossRefGoogle Scholar
[2] Freitag, E.; Siegelsche Modulfunktionen, Die Grund. der Math. Wiss., 254, Springer-Verlag (1983).Google Scholar
[3] van Geemen, B., van der Geer, G.; Kummer Varieties and the Moduli Spaces of Abelian Varieties, Amer. J. Math., 108 (1986), 615641.Google Scholar
[4] Hartshorne, R.; Algebraic Geometry Graduate Texts in Math, 52, Springer-Verlag (1977).Google Scholar
[5] Igusa, J. L.; On Siegel Modular Form of Genus two II. Amer. J. Math., 86 (1964), 392412.CrossRefGoogle Scholar
[6] Igusa, J. L.; Theta Functions, Die Grund, der Math. Wiss. 194, Springer-Verlag (1972).Google Scholar
[7] Igusa, J. L.; On the Variety associated with the Ring of Thetanullwerte, Amer. J. Math., 103(1981), 377398.Google Scholar
[8] Salvati, Manni R.; Moduli Space of ppav with Level (Theta) Structure and Reducible Points, to appear on Amer. J. Math.Google Scholar
[9] Runge, B., “On Siegel modular forms”, J. reine angew. Math., 443 (1993), 5785.Google Scholar