Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T23:10:32.440Z Has data issue: false hasContentIssue false

On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings

Published online by Cambridge University Press:  22 January 2016

Nguyen Tu Cuong*
Affiliation:
Institute of Mathematics, P. O. Box 631 Bó Hô 10.000 Hanoi, Vietnam
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A be a commutative local Noetherian ring with the maximal ideal m and M a finitely generated A-module, d = dim M. It is well-known that the difference between the length and the multiplicity of a parameter ideal q of M

gives a lot of informations on the structure of the module M. For instance, M is a Cohen-Macaulay (CM for short) module if and only if IM(q) = 0 for some parameter ideal q or M is Buchsbaum module (see [S-V]) if and only if IM(q) is a constant for all parameter ideals q of M.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1992

References

[A-B] Auslander, M. and Buehsbaum, D. A., Codimension and multiplicity, Ann. Math., 68 (1958), 625657.CrossRefGoogle Scholar
[C1] Cuong, N. T., On the lengths of the powers of a system of parameters in local ring, Nagoya Math. J., 120 (1990), 7788.CrossRefGoogle Scholar
[C2] Cuong, N. T., On the dimension of the non- Cohen-Macaulay locus of local rings admitting dualizing complexes, to appear in Math. Proc. Cambridge Phil. Soc, 109 (2) (1991), 479488.CrossRefGoogle Scholar
[C-S-T] Cuong, N. T., Schenzel, P. and Trung, N. V., Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr., 85 (1978), 5773.Google Scholar
[D-E] Daepp, U. and Evans, A., Openness and invariance results on generalized Cohen-Macaulay rings, Houston J. Math., 15 no. 2 (1989), 193201.Google Scholar
[F-R] Ferrand, D. et Raynaud, M., Fibres formelles d’un anneau local Noetherian, Ann. Sc. Ec. Norm. Sup., (4) 3 (1970), 295311.Google Scholar
[G] Garcia Roig, J-L., On polynomial bounds for the Koszul homology of certain multiplicity systems, J. London Math. Soc, (2) 34 (1986), 411416.Google Scholar
[G-K] Garcia Roig, J-L. and Kirby, D., On the Koszul homology modules for the powers of a multiplicity system, Mathematika, 33 (1986), 96101.CrossRefGoogle Scholar
[M] Matsumura, H., “Commutative algebra”, Second Edition, Benjamin, Reading, 1980.Google Scholar
[N] Nagata, M., “Local rings”, Interscience, New York 1962.Google Scholar
[S] Schenzel, P., Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lect. Notes in Math. No. 907, Springer-Verlag, Berlin-Heiderberg-New York, 1982 Google Scholar
[S-V] Stückrad, J. and Vogel, W., “Buehsbaum rings and applications”, Springer-Verlag, Berlin-Heidelberg-New York 1986.CrossRefGoogle Scholar