Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T00:29:01.787Z Has data issue: false hasContentIssue false

On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces

Published online by Cambridge University Press:  22 January 2016

Toshitake Kohno*
Affiliation:
Department of Mathematics, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to establish the following isomorphism of Lie algebras.

Main Theorem. Let X be the complement of a hypersurface S in the complex projective space PN. Then the tower of nilpotent complex Lie algebras associated with the fundamental group π1(X, *) and the holonomy Lie algebraattached to S are isomorphic.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1983

References

[A] Aomoto, K., Functions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Univ. Tokyo, 25 (1978), 149156.Google Scholar
[B] Brieskorn, E., Sur les groupe de tresses, Séminaire Bourbaki, 1971.Google Scholar
[C] Chen, K. T., Iterated integrals of differential forms and loop space cohomology, Ann. of Math., 97 (1973), 217246.CrossRefGoogle Scholar
[D] Deligne, P., Théorie de Hodge II, Publ. Math. I.H.E.S., 40 (1971), 558.Google Scholar
[FGM] Friedlander, E., Griffiths, P., Morgan, J., Homotopy theory of Differential forms, Seminarie di Geometria 1972, Firenze.Google Scholar
[HL] Hamm, H. et Tráng, Lê Dũng, Un théorème de Zariski du type Lefschetz, Ann. Sci. de l’école normale supérieure fasc. 3, 1973.Google Scholar
[Ko1] Kohno, T., Differential forms and the fundamental group of the complement of hypersurfaces, Proc. Pure Math. Amer. Math. Soc., 40 (1983), Part 1, 655662.Google Scholar
[Ko2] Kohno, T., Etude algébrique du groupe fondamental du complément d’une hypersurface et problèmes de K(π, 1) thèse de 3-ème cycle Université Paris VII, 1982.Google Scholar
[Kr] Kraines, D., Massey higher products, Trans. Amer. Math. Soc., 124 (1966), 431439.CrossRefGoogle Scholar
[M] Morgan, J., The algebraic topology on smooth algebraic varieties, Publ. Math. I.H.E.S., 48 (1978), 137204.CrossRefGoogle Scholar
[S1] Sullivan, D., Differential forms and the topology of manifolds, Manifolds, Tokyo, 1973, 3749.Google Scholar
[S2] Sullivan, D., Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1977), 269331.Google Scholar
[Z] Zariski, 0., On the problem of existence of algebraic functions of two variables possessing a given branched curve, Amer. J. Math., 51 (1921), 305328.Google Scholar
[GHV] Greub, W., Halperin, S. and Vanstone, R., Connections, curvature and cohomology vol. III, Academic press.Google Scholar
[MKS] Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory Dover.Google Scholar