Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T21:49:32.496Z Has data issue: false hasContentIssue false

On the Groups of Cobordism Ωk

Published online by Cambridge University Press:  22 January 2016

Masahisa Adachi*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the papers [11] and [18] Rohlin and Thom have introduced an equivalence relation into the set of compact orientable (not necessarily connected) differentiable manifolds, which, roughly speaking, is described in the following manner: two differentiable manifolds are equivalent (cobordantes), when they together form the boundary of a bounded differentiable manifold. The equivalence classes can be added and multiplied in a natural way and form a graded algebra Ω relative to the addition, the multiplication and the dimension of manifolds. The precise structures of the groups of cobordism Ωk of dimension k are not known thoroughly. Thom [18] has determined the free part of Ω and also calculated explicitly Ωk for 0 ≦ k ≦ 7.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1958

References

[1] Adachi, M.. Sur les groupes de cobordisme Ωk , Proc. Japan Acad., 33 (1957), 143144.Google Scholar
[2] Borel, A., La cohomologie modulo 2 de certaines espaces homogènes, Comment. Math. Helv., 27 (1953), 165197.Google Scholar
[3] Serre, A. Borel-J. P., Groupes de Lie et puissances réduites de Steerod, Amer. J. Math., 75 (1953), 409448.Google Scholar
[4] Cartan, H., Sur les groupes d’Eilenberg-MacLane H(II, n), II, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 704707.Google Scholar
[5] Cartan, H., Sur l’itération des opérations de Steenrod, Comment. Math. Helv., 29 (1955), 4058.Google Scholar
[6] Dold, A., Erzeugende der Thomschen Algebra Math. Z., 65 (1956), 2535.Google Scholar
[7] Eilenberg, S., On the problems of topology, Ann. of Math., 50 (1949), 247260.Google Scholar
[8] Hirzebruch, F., Neue topologische Methoden in der algebraischen Geometrie, Springer, (1956).Google Scholar
[9] Milnor, J., On manifolds homeomorphic to the 7-aphere, Ann. of Math., 64 (1956), 399405.Google Scholar
[10] Rohlin, B., Une variété de dimension 3 est le bord d’une variété de dimension 4, Doklady Akad. Nauk S.S.S.R., 81 (1951), 355357.Google Scholar
[11] Rohlin, B., Nouveaux résultats en théorie des variétés de dimension 4, Doklady Akad. Nauk S.S.S.R., 84 (1952), 221224.Google Scholar
[12] Serre, J. P., Homologie singulière des espaces fibres. Applications, Ann. of Math., 54 (1951), 425505.Google Scholar
[13] Serre, J. P., Groupes d’homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), 258294.Google Scholar
[14] Serre, J. P., Cohomologie modulo 2 des complexes d’Eilenberg-MacLane, Comment. Math. Helv., 27 (1953), 198231.Google Scholar
[15] Shimada, N., Differentiable structures on the 15-sphere and Pontrjagin classes of certain manifolds, Nagoya Math. J., 12 (1957), 5969.Google Scholar
[16] Tamura, I., Homeomorphy classification of total spaces of sphere bundles over spheres, J. Math. Soc. Japan, 10 (1958), 2943.Google Scholar
[17] Thorn, R., Espaces fibres en sphères et carrés de Steenrod, Ann. Sci. Ecole Norm. Sup., 69 (1952), 109182.Google Scholar
[18] Thorn, R., Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 1786.Google Scholar
[19] Wu, W.-T., Classes caractéristiques et i-carrés d’une variété, C. R. Acad. Sci. Paris, 230 (1950), 508511.Google Scholar
[20] Wu, W.-T., Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris, 230 (1950), 918920.Google Scholar
[21] Wu, W.-T., Sur les classes caractéristiques des structures fibrées sphériques, Actual. Sci. Ind., 1183 (1952), 189.Google Scholar