Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T23:23:20.805Z Has data issue: false hasContentIssue false

On the Grobal Dimension of Ore-Extensions

Published online by Cambridge University Press:  22 January 2016

S. M. Bhatwadekar*
Affiliation:
School of Mathematics, Tata Institue of Fundamental Research
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let S be a ring and d be a derivation of S. The Oreextension S(X,d) is the ring generated by S and an indeterminate X satisfying the ralation XaaX = da for all a in S.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Auslander, M., On the Dimension of Modules and algebras (III). Global dimension, Nagoya Mathematical Journal, 9, 6777 (1955).CrossRefGoogle Scholar
[2] Cartan, H. and Eilenberg, S., Homological Algebra, Princeton University Press, 1956.Google Scholar
[3] Gopalakrishnan, N.S. and Sridharan, R., Homological Dimension of Ore-extensions, Pacific J. Math., 19, 6775 (1966).Google Scholar
[4] Mouaze, Y. and Gabriel, P., Idéaux Premiers de l’Algebre Enveloppante d’une Algèbre de lie Nilpotente, J. of Algebra, 6, 7799 (1967).Google Scholar
[5] Rinehart, G. S., Note on the Global Dimension of certain rings, Proc. Amer. Math. Soc, 13, 341346 (1962).CrossRefGoogle Scholar
[6] Roos, M. Jan-Erik, Dètermination de la dimension homologique globale des algebres de Weyl, Comptes Rendus, Séries A, 274, 2326 (1972).Google Scholar
[7] Stensträm, Bo, Rings and Modules of Quotients, Springer, Berlin, 1971.Google Scholar