Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T10:42:15.337Z Has data issue: false hasContentIssue false

On the grade and cograde of a Noetherian filtration

Published online by Cambridge University Press:  22 January 2016

J. S. Okon
Affiliation:
Department of Mathematics, California State University, San Bernardino, California 92407
L. J. Ratliff Jr.
Affiliation:
Department of Mathematics, University of California, Riverside, California 92521
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

All rings in this paper are assumed to be commutative with identity and the terminology is standard.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1991

References

[1] Bishop, W., Petro, J. W., Ratliff, L. J. Jr. and Rush, D. E., Note on Noetherian nitrations, Comm. Algebra, 17 (1989), 471485.Google Scholar
[2] Bourbaki, N., Elements of Mathematics; Commutative Algebra, Addison-Wesley, Reading, Mass., 1972.Google Scholar
[3] Katz, D., A note on asymptotic prime sequences, Proc. Amer. Math. Soc., 87 (1983), 415418.Google Scholar
[4] Katz, D. and Ratliff, L. J. Jr., U-essential prime divisions and sequences, Nagoya Math. J., 103 (1986), 3966.Google Scholar
[5] Katz, D., McAdam, S., Okon, J. S. and Ratliff, L. J. Jr., Essential prime divisors and projectively equivalent ideals, J. Algebra, 109 (1987), 468478.CrossRefGoogle Scholar
[6] Katz, D., McAdam, S. and Ratliff, L. J. Jr., Prime divisors and divisorial ideals, J. Pure Appl. Algebra, 59 (1989), 179186.Google Scholar
[7] McAdam, S., Asymptotic Prime Divisors, Lecture Notes in Math., no. 1023, Springer, New York, 1983.Google Scholar
[8] McAdam, S. and Ratliff, L. J. Jr., On the asymptotic cograde of an ideal, J. Algebra, 87 (1984), 3652.Google Scholar
[9] McAdam, S. and Ratliff, L. J. Jr., Essential sequences, J. Algebra, 95 (1985), 217235.Google Scholar
[10] McAdam, S., Quintessential primes and four results of Schenzel, J. Jure Appl. Algebra, 47 (1987), 283298.Google Scholar
[11] Nagata, M., On the chain problem of prime ideals, Nagoya Math. J., 10 (1956), 5164.Google Scholar
[12] Okon, J. S., Asymptotic Prime Divisors and Filtrations, Ph. D. Dissertation, Univ. of California, Riverside, 1980.Google Scholar
[13] Okon, J. S. and Ratliff, L. J. Jr., Filtrations, closure operations, and prime divisors, Math. Proc. Cambridge Philos. Soc., 104 (1988), 3146.Google Scholar
[14] Okon, J. S. and Ratliff, L. J. Jr., Filtrations, prime divisors, and Rees rings, Houston J. Math., 18 (1990), 387405.Google Scholar
[15] Okon, J. S. and Ratliff, L. J. Jr., Reductions of filtrations, Pacific J. Math., 144 (1990), 137154.CrossRefGoogle Scholar
[16] Ratliff, L. J. Jr., Notes on essentially powers filtrations, Michigan Math. J., 26 (1979), 313324.Google Scholar
[17] Ratliff, L. J. Jr., Asymptotic sequences, J. Algebra, 85 (1983), 337360.CrossRefGoogle Scholar
[18] Ratliff, L. J. Jr., Note on analytic spread and asymptotic sequences, Math. Proc. Cambridge Philos. Soc., 93 (1983), pp. 4955.CrossRefGoogle Scholar
[19] Ratliff, L. J. Jr., On asymptotic prime divisors, Pacific J. Math., 111 (1984), 395413.Google Scholar
[20] Ratliff, L. J. Jr., Asymptotic sequences and Rees rings, J. Algebra, 89 (1984), 6587.Google Scholar
[21] Ratliff, L. J. Jr., Five notes on asymptotic prime divisors, Math. Z., 190 (1985), 567581.Google Scholar
[22] Ratliff, L. J. Jr., Asymptotic prime divisors and integral extension rings, J. Algebra, 95 (1985), 409431.Google Scholar
[23] Ratliff, L. J. Jr., Essential sequences over an ideal and essential cograde, Math. Z., 188 (1985), 383395.Google Scholar
[24] Ratliff, L. J. Jr., Essential sequences and Rees rings, J. Algebra, 99 (1986), 337354.Google Scholar
[25] Ratliff, L. J. Jr. and Rush, D. E., Note on I-good filtrations and Noetherian Rees rings, Comm. Algebra, 16 (1988), 955975.Google Scholar
[26] Ratliff, L. J. Jr., Notes on protectively related ideas and residual division, J. Algebra, 130 (1990), 435450.Google Scholar
[27] Rees, D., Rings associated with ideals and analytic spread, Math. Proc. Cambridge Philos. Soc., 89 (1981), 423432.Google Scholar
[28] Rees, D., Asymptotic Properties of Ideals, Nagoya Lecture Notes, preprint.Google Scholar
[29] Rees, D., Semi-Noether filtrations: I, J. London Math. Soc., 37 (1988), 4362.Google Scholar