Published online by Cambridge University Press: 22 January 2016
Throughout the paper, a scheme means a noetherian scheme. By a curve C over a scheme S of genus g, we mean a proper and smooth S-scheme with irreducible curves of genus g as geometric fibres. In the previous paper [15], the author showed that the field of moduli for a non-hyperelliptic curve over a field coincides with the one for its canonically polarized jacobian variety, and in [16], he gave a partial result on the coincidence of the fields of rationality for a hyperelliptic curve and for its canonically polarized jacobian variety. In the present paper, we will discuss the isomorphy of the isomorphism schemes of two curves over a scheme and of their canonically polarized jacobian schemes, by using Oort-Steenbrink’s result [12].