Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T23:06:30.544Z Has data issue: false hasContentIssue false

On the extension of L2 holomorphic functions V-Effects of generalization

Published online by Cambridge University Press:  22 January 2016

Takeo Ohsawa*
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A general extension theorem for L2 holomorphic bundle-valued top forms is formulated. Although its proof is based on a principle similar to Ohsawa-Takegoshi’s extension theorem, it explains previous L2 extendability results systematically and bridges extension theory and division theory.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2001

References

[B-D] Bonneau, P. and Diederich, K., Integral solution operators for the Cauchy-Riemann equations on pseudoconvex domains, Math. Ann., 286 (1990), 77100.CrossRefGoogle Scholar
[B-O] Berndtsson, B. and Ortega, J.M., On interpolation and sampling in Hilbert space of analytic functions, J. Reine. Angew. Math., 464 (1995), 109128.Google Scholar
[D] Demailly, J.-P., Scindage holomorphe d’un morphisme de fibrés vectoriells semi-positifs avec estimations L 2 , Séminaire Pierre Lelong-Henri Skoda (Analysis), 1980/1981, and Colloquium at Wimereux, May 1981, pp. 77107. LNM, 919 Springer, Berlin-New York, 1982.Google Scholar
[D-F] Diederich, K. and Fornaess, J.E., On the nature of thin complements of complete Kähler metrics, Math. Ann., 264 (1984), 475495.CrossRefGoogle Scholar
[D-H-O] Diederich, K., Herbort, G. and Ohsawa, T., The Bergman kernel on uniformly extendable pseudoconvex domains, Math. Ann., 273 (1986), 371384.CrossRefGoogle Scholar
[G] Grauert, H., Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann., 131 (1956), 3875.CrossRefGoogle Scholar
[G-K] Greene, R.E. and Krantz, S., Deformation of complex structures, estimates for the equation, and stability of the Bergman kernel, Adv. in Math., 43 (1982), 186.Google Scholar
[H-L] Henkin, G. and Leiterer, J., The Oka-Grauert principle without induction over the base dimension, Math. Ann., 311 (1998), 7193.Google Scholar
[M] Manivel, L., Un théorème de prolongement L2 des sections holomorphes d’unfibré hermitein, Math. Z., 212 (1993), 107122.Google Scholar
[O-1] Ohsawa, T., On complete Kähler domains with C1 boundary, Publ.. RIMS, Kyoto Univ., 15 (1980), 929940.Google Scholar
[O-2] Ohsawa, T., On the extenson of L2 holomorphic functions II, Publ. RIMS, Kyoto Univ., 24 (1988), 265275.CrossRefGoogle Scholar
[O-3] Ohsawa, T., The existence of right inverses of residue homomorphisms, Complex Analysis and Geometry, Plenum Press, New York, 1993, pp. 285291.Google Scholar
[O-4] Ohsawa, T., On the Bergman kernel of hyperconvex domains, Nagoya Math. J., 129 (1993), 4352.Google Scholar
[O-5] Ohsawa, T., On the extension of L2 holomorphic functions III: negligible weights, Math. Z., 219 (1995), 215225.Google Scholar
[O-6] Ohsawa, T., Addendum to “On the Bergman kernel of hyperconvex domians”, Nagoya Math. J., 137 (1995), 145148.CrossRefGoogle Scholar
[O-7] Ohsawa, T., On the extension of L2 holomorphic functions IV: a new density con cept, Geometry and Analysis on Complex Manifolds, Festschrift for Prof. S. Kobayashi, World Sci. 1994, pp. 157170.Google Scholar
[O-T] Ohsawa, T. and Takegoshi, K., On the extension of L2 holomorphic funcitons, Math. Z., 195 (1987), 197204.CrossRefGoogle Scholar
[Sp-1] Seip, K., Density theorems for sampling and interpolation in the Bargmann-Fock space I, J. Reine Angew. Math., 429 (1992), 91106.Google Scholar
[Sp-2] Seip, K., Beurling type density theorems in the unit disc, Invent. Math., 113 (1993), 2139.Google Scholar
[Sp-W] Seip, K. and Wallstéen, R., Density theorems for sampling and interpolation in the Bargmann-Fock space II, J. Reine Angew. Math., 429 (1992), 107113.Google Scholar
[S] Siu, Y.T., Every Stein subvariety admits a Stein neighbourhood, Invent. Math., 38 (1976/77), 89100.CrossRefGoogle Scholar
[Sk-1] Skoda, H., Application des techniques L2 à la théorie des idéaux d’une algébre de fonctions holomorphes avec poids, Ann. Sci. Ec. Norm. Sup., 5 (1972), 545579.Google Scholar
[Sk-2] Skoda, H., Morphismes surjectifs de fibrés vectoriels semi-positifs, Ann. Sci. Ecole Norm. Sup., 11 (1978), 577611.CrossRefGoogle Scholar
[Sk-3] Skoda, H., Relévement des sections globales dans les fibrés semi-positifs, Séminaire Pierre Lelong-Henri Skoda (Analyse), Années 1978/79 LNM 822, Springer, Berlin 1980 pp. 259301.Google Scholar
[St] Suita, N., Capacities and kernels on Riemann surfaces, Arch. Rational Mech. Anal., 46 (1972), 212217.CrossRefGoogle Scholar
[T] Takayama, S., Adjoint linear series on weakly 1-complete Kähler manifolds I: Global projective embedding, Math. Ann., 311 (1998), 501531.Google Scholar